RHEA:55768
Enzymes help_outline | 2 proteins (UniProtKB) |
Reaction participants Show >> << Hide
- Name help_outline all-trans-retinoate Identifier CHEBI:35291 Charge -1 Formula C20H27O2 InChIKeyhelp_outline SHGAZHPCJJPHSC-YCNIQYBTSA-M SMILEShelp_outline CC(\C=C\C1=C(C)CCCC1(C)C)=C/C=C/C(C)=C/C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucuronate Identifier CHEBI:58052 Charge -3 Formula C15H19N2O18P2 InChIKeyhelp_outline HDYANYHVCAPMJV-LXQIFKJMSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)C([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 86 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline all-trans-retinoyl-1-O-(β-D-glucuronate) Identifier CHEBI:139181 Charge -1 Formula C26H35O8 InChIKeyhelp_outline MTGFYEHKPMOVNE-NEFMKCFNSA-M SMILEShelp_outline C1C(C(=C(CC1)C)/C=C/C(/C)=C/C=C/C(/C)=C/C(O[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)C(=O)[O-])O)O)O)=O)(C)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 489 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Links to other resources
RHEA:55768 | RHEA:55769 | RHEA:55770 | RHEA:55771 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Citations
-
4-hydroxyretinoic acid, a novel substrate for human liver microsomal UDP-glucuronosyltransferase(s) and recombinant UGT2B7.
Samokyszyn V.M., Gall W.E., Zawada G., Freyaldenhoven M.A., Chen G., Mackenzie P.I., Tephly T.R., Radominska-Pandya A.
It is suggested that formation of more polar metabolites of all-trans-retinoic acid (atRA) via oxidative pathways limits its biological activity. In this report, we investigated the biotransformation of oxidized products of atRA via glucuronidation. For this purpose, we synthesized 4-hydroxy-RA (4 ... >> More
It is suggested that formation of more polar metabolites of all-trans-retinoic acid (atRA) via oxidative pathways limits its biological activity. In this report, we investigated the biotransformation of oxidized products of atRA via glucuronidation. For this purpose, we synthesized 4-hydroxy-RA (4-OH-RA) in radioactive and nonradioactive form, 4-hydroxy-retinyl acetate (4-OH-RAc), and 5,6-epoxy-RA, all of which are major products of atRA oxidation. Glucuronidation of these retinoids by human liver microsomes and human recombinant UDP-glucuronosyltransferases (UGTs) was characterized and compared with the glucuronidation of atRA. The human liver microsomes glucuronidated 4-OH-RA and 4-OH-RAc with 6- and 3-fold higher activity than atRA, respectively. Analysis of the glucuronidation products showed that the hydroxyl-linked glucuronides of 4-OH-RA and 4-OH-RAc were the major products, as opposed to the formation of the carboxyl-linked glucuronide with atRA, 4-oxo-RA, and 5,6-epoxy-RA. We have also determined that human recombinant UGT2B7 can glucuronidate atRA, 4-OH-RA, and 4-OH-RAc with activities similar to those found in human liver microsomes. We therefore postulate that this human isoenzyme, which is expressed in human liver, kidney, and intestine, plays a key role in the biological fate of atRA. We also propose that atRA induces its own oxidative metabolism via a cytochrome P450 (CYP26) and is further biotransformed into glucuronides via UGT-mediated pathways. << Less
J. Biol. Chem. 275:6908-6914(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.