Enzymes
| UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline scopoletin Identifier CHEBI:17488 (CAS: 92-61-5) help_outline Charge 0 Formula C10H8O4 InChIKeyhelp_outline RODXRVNMMDRFIK-UHFFFAOYSA-N SMILEShelp_outline COc1cc2ccc(=O)oc2cc1O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline fraxetin Identifier CHEBI:5169 (CAS: 574-84-5) help_outline Charge 0 Formula C10H8O5 InChIKeyhelp_outline HAVWRBANWNTOJX-UHFFFAOYSA-N SMILEShelp_outline C12=C(C=C(OC)C(=C1O)O)C=CC(O2)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 349 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,058 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:57848 | RHEA:57849 | RHEA:57850 | RHEA:57851 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| MetaCyc help_outline |
Publications
-
Biosynthesis of redox-active metabolites in response to iron deficiency in plants.
Rajniak J., Giehl R.F.H., Chang E., Murgia I., von Wiren N., Sattely E.S.
Iron is an essential but poorly bioavailable nutrient because of its low solubility, especially in alkaline soils. Here, we describe the discovery of a previously undescribed redox-active catecholic metabolite, termed sideretin, which derives from the coumarin fraxetin and is the primary molecule ... >> More
Iron is an essential but poorly bioavailable nutrient because of its low solubility, especially in alkaline soils. Here, we describe the discovery of a previously undescribed redox-active catecholic metabolite, termed sideretin, which derives from the coumarin fraxetin and is the primary molecule exuded by Arabidopsis thaliana roots in response to iron deficiency. We identified two enzymes that complete the biosynthetic pathway of fraxetin and sideretin. Chemical characterization of fraxetin and sideretin, and biological assays with pathway mutants, suggest that these coumarins are critical for iron nutrition in A. thaliana. Further, we show that sideretin production also occurs in eudicot species only distantly related to A. thaliana. Untargeted metabolomics of the root exudates of various eudicots revealed production of structurally diverse redox-active molecules in response to iron deficiency. Our results indicate that secretion of small-molecule reductants by roots may be a widespread and previously underappreciated component of reduction-based iron uptake. << Less
Nat. Chem. Biol. 14:442-450(2018) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis.
Siwinska J., Siatkowska K., Olry A., Grosjean J., Hehn A., Bourgaud F., Meharg A.A., Carey M., Lojkowska E., Ihnatowicz A.
Iron deficiency is a serious agricultural problem, particularly in alkaline soils. Secretion of coumarins by Arabidopsis thaliana roots is induced under iron deficiency. An essential enzyme for the biosynthesis of the major Arabidopsis coumarins, scopoletin and its derivatives, is Feruloyl-CoA 6'- ... >> More
Iron deficiency is a serious agricultural problem, particularly in alkaline soils. Secretion of coumarins by Arabidopsis thaliana roots is induced under iron deficiency. An essential enzyme for the biosynthesis of the major Arabidopsis coumarins, scopoletin and its derivatives, is Feruloyl-CoA 6'-Hydroxylase1 (F6'H1), which belongs to a large enzyme family of the 2-oxoglutarate and Fe2+-dependent dioxygenases. We have functionally characterized another enzyme of this family, which is a close homologue of F6'H1 and is encoded by a strongly iron-responsive gene, At3g12900. We purified At3g12900 protein heterologously expressed in Escherichia coli and demonstrated that it is involved in the conversion of scopoletin into fraxetin, via hydroxylation at the C8 position, and that it thus functions as a scopoletin 8-hydroxylase (S8H). Its function in plant cells was confirmed by the transient expression of S8H protein in Nicotiana benthamiana leaves, followed by metabolite profiling and biochemical and ionomic characterization of Arabidopsis s8h knockout lines grown under various iron regimes. Our results indicate that S8H is involved in coumarin biosynthesis, as part of mechanisms used by plants to assimilate iron. << Less