RHEA:60129
Reaction with net flow from left to right. help_outline | |
Enzymes help_outline | 575 proteins (UniProtKB) |
Reaction participants Show >> << Hide
- Name help_outline 17β-estradiol 17-O-(β-D-glucuronate) Identifier CHEBI:82961 Charge -1 Formula C24H31O8 InChIKeyhelp_outline MTKNDAQYHASLID-QXYWQCSFSA-M SMILEShelp_outline C[C@]12CC[C@H]3[C@@H](CCc4cc(O)ccc34)[C@@H]1CC[C@@H]2O[C@@H]1O[C@@H]([C@@H](O)[C@H](O)[C@H]1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,048 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 5,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 713 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge +1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 7,811 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 830 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Links to other resources
RHEA:60128 | RHEA:60129 | RHEA:60130 | RHEA:60131 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Citations
-
Mutation of Trp1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of methotrexate transport activity.
Ito K., Oleschuk C.J., Westlake C., Vasa M.Z., Deeley R.G., Cole S.P.C.
The ATP-binding cassette (ABC) proteins comprise a large superfamily of transmembrane transporters that utilize the energy of ATP hydrolysis to translocate their substrates across biological membranes. Multidrug resistance protein (MRP) 2 (ABCC2) belongs to subfamily C of the ABC superfamily and, ... >> More
The ATP-binding cassette (ABC) proteins comprise a large superfamily of transmembrane transporters that utilize the energy of ATP hydrolysis to translocate their substrates across biological membranes. Multidrug resistance protein (MRP) 2 (ABCC2) belongs to subfamily C of the ABC superfamily and, when overexpressed in tumor cells, confers resistance to a wide variety of anticancer chemotherapeutic agents. MRP2 is also an active transporter of organic anions such as methotrexate (MTX), estradiol glucuronide (E217betaG), and leukotriene C4 and is located on the apical membrane of polarized cells including hepatocytes where it acts as a biliary transporter. We recently identified a highly conserved tryptophan residue in the related MRP1 that is critical for the substrate specificity of this protein. In the present study, we have examined the effect of replacing the analogous tryptophan residue at position 1254 of MRP2. We found that only nonconservative substitutions (Ala and Cys) of Trp1254 eliminated [3H]E217betaG transport by MRP2, whereas more conservative substitutions (Phe and Tyr) had no effect. In addition, only the most conservatively substituted mutant (W1254Y) transported [3H]leukotriene C4, whereas all other substitutions eliminated transport of this substrate. On the other hand, all substitutions of Trp1254 eliminated transport of [3H]MTX. Finally, we found that sulfinpyrazone stimulated [3H]E217betaG transport by wild-type MRP2 4-fold, whereas transport by the Trp1254 substituted mutants was enhanced 6-10-fold. In contrast, sulfinpyrazone failed to stimulate [3H]MTX transport by either wild-type MRP2 or the MRP2-Trp1254 mutants. Taken together, our results demonstrate that Trp1254 plays an important role in the ability of MRP2 to transport conjugated organic anions and identify this amino acid in the putative last transmembrane segment (TM17) of this ABC protein as being critical for transport of MTX. << Less
-
ABCG2 transports sulfated conjugates of steroids and xenobiotics.
Suzuki M., Suzuki H., Sugimoto Y., Sugiyama Y.
The mechanism for the cellular extrusion of sulfated conjugates is still unknown. In the present study, we investigated whether human wild type ABCG2 transports estrone 3-sulfate (E1S) using membrane vesicles from cDNA-transfected mouse lymphoma cell line (P388 cells). The uptake of [3H]E1S into A ... >> More
The mechanism for the cellular extrusion of sulfated conjugates is still unknown. In the present study, we investigated whether human wild type ABCG2 transports estrone 3-sulfate (E1S) using membrane vesicles from cDNA-transfected mouse lymphoma cell line (P388 cells). The uptake of [3H]E1S into ABCG2-expressing membrane vesicles was stimulated by ATP, and the Km value for [3H]E1S was determined to be 16.6 microm. The ABCG2-mediated transport of [3H]E1S was potently inhibited by SN-38 and many sulfate conjugates but not by glucuronide and glutathione conjugates or other anionic compounds. Other sulfate conjugates such as [3H]dehydroepiandrosterone sulfate (DHEAS) and [35S]4-methylumbelliferone sulfate (Km = 12.9 microm) and [35S]6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl)benzothiazole (E3040) sulfate (Km = 26.9 microm) were also transported by ABCG2. Although [3H]methotrexate, [3H]17beta-estradiol-17beta-D-glucuronide, [3H]2,4-dinitrophenyl-S-glutathione, and [14C]4-methylumbelliferone glucuronide were transported by ABCG2, this took place to a much lesser extent compared with [3H]E1S. It was suggested that ABCG2 preferentially transports sulfate conjugates and that E1S and DHEAS are the potential physiological substrates for this transporter. << Less
J. Biol. Chem. 278:22644-22649(2003) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Pharmacological characterization of the murine and human orthologs of multidrug-resistance protein in transfected human embryonic kidney cells.
Stride B.D., Grant C.E., Loe D.W., Hipfner D.R., Cole S.P.C., Deeley R.G.
Overexpression of the human multidrug-resistance protein (MRP) causes a form of multidrug resistance similar to that conferred by P-glycoprotein, although the two proteins are only distantly related. In contrast to P-glycoprotein, human MRP has also been shown to be a primary active transporter of ... >> More
Overexpression of the human multidrug-resistance protein (MRP) causes a form of multidrug resistance similar to that conferred by P-glycoprotein, although the two proteins are only distantly related. In contrast to P-glycoprotein, human MRP has also been shown to be a primary active transporter of a structurally diverse range of organic anionic conjugates, some of which may be physiological substrates. At present, the mechanism by which MRP transports these compounds and mediates multidrug resistance is not understood. With the objective of developing an animal model for studies on the normal functions of MRP and its ability to confer multidrug resistance in vivo, we recently cloned the murine ortholog of MRP (mrp). To assess the degree of functional conservation between mrp and MRP, we directly compared the drug cross-resistance profiles they confer when transfected into human embryonic kidney cells, as well as their ability to actively transport leukotriene C4, 17beta-Estradiol 17beta-(D-glucuronide), and vincristine; mrp and MRP conferred similar drug resistance profiles, with the exception that only MRP conferred resistance to the anthracyclines tested. Consistent with these findings, accumulation of [3H]vincristine and [3H]VP-16 was decreased, and efflux of [3H]vincristine was increased in both murine and human MRP-transfected cell populations, whereas only human MRP-transfected cells displayed decreased accumulation and increased efflux of [3H]daunorubicin. Membrane vesicles derived from both transfected cell populations transported leukotriene C4 in an ATP-dependent manner with comparable efficiency, although the efficiency of 17beta-estradiol 17beta-(D-glucuronide) transport was somewhat higher with MRP transfectants. ATP-dependent transport of vincristine was also observed with vesicles from mrp and MRP transfectants but only in the presence of glutathione. These studies reveal intrinsic differences between the murine and human MRP orthologs with respect to their ability to confer resistance to a major class of chemotherapeutic drugs. << Less
Mol. Pharmacol. 52:344-353(1997) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.