Reaction participants Show >> << Hide
- Name help_outline lochnericine Identifier CHEBI:144374 Charge 1 Formula C21H25N2O3 InChIKeyhelp_outline AUVZFRDLRJQTQF-KXEYLTKFSA-O SMILEShelp_outline C=1(C[C@]2([C@@]3([NH+](C[C@H]4[C@@H]2O4)CC[C@]53C6=C(NC51)C=CC=C6)[H])CC)C(=O)OC 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11964
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 852 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline horhammericine Identifier CHEBI:144375 Charge 1 Formula C21H25N2O4 InChIKeyhelp_outline QVNXPWJNUKKMHP-JJGNIUBRSA-O SMILEShelp_outline C=1(C[C@]2([C@@]3([NH+](C[C@H]4[C@@H]2O4)CC[C@]53C6=C(NC51)C=CC=C6)[H])[C@@H](C)O)C(=O)OC 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11965
Reactive part
help_outline
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 861 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:61048 | RHEA:61049 | RHEA:61050 | RHEA:61051 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| KEGG help_outline |
Publications
-
A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus.
Giddings L.-A., Liscombe D.K., Hamilton J.P., Childs K.L., Dellapenna D., Buell C.R., O'Connor S.E.
Plant cytochrome P450s are involved in the production of over a hundred thousand metabolites such as alkaloids, terpenoids, and phenylpropanoids. Although cytochrome P450 genes constitute one of the largest superfamilies in plants, many of the catalytic functions of the enzymes they encode remain ... >> More
Plant cytochrome P450s are involved in the production of over a hundred thousand metabolites such as alkaloids, terpenoids, and phenylpropanoids. Although cytochrome P450 genes constitute one of the largest superfamilies in plants, many of the catalytic functions of the enzymes they encode remain unknown. Here, we report the identification and functional characterization of a cytochrome P450 gene in a new subfamily of CYP71, CYP71BJ1, involved in alkaloid biosynthesis. Co-expression analysis of putative cytochrome P450 genes in the Catharanthus roseus transcriptome identified candidate genes with expression profiles similar to known terpene indole alkaloid biosynthetic genes. Screening of these candidate genes by functional expression in Saccharomyces cerevisiae yielded a unique P450-dependent enzyme that stereoselectively hydroxylates the alkaloids tabersonine and lochnericine at the 19-position of the aspidosperma-type alkaloid scaffold. Tabersonine, which can be converted to either vindoline or 19-O-acetylhörhammericine, represents a branch point in alkaloid biosynthesis. The discovery of CYP71BJ1, which forms part of the pathway leading to 19-O-acetylhörhammericine, will help illuminate how this branch point is controlled in C. roseus. << Less
J. Biol. Chem. 286:16751-16757(2011) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The assembly of (+)-vincadifformine- and (-)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways.
Williams D., Qu Y., Simionescu R., De Luca V.
The biological activity of monoterpenoid indole alkaloids (MIAs) has led to their use in cancer treatment and other medical applications. Their biosynthesis has involved the formation of reactive intermediates by responsible enzymes to elaborate several different chemical scaffolds. Modification o ... >> More
The biological activity of monoterpenoid indole alkaloids (MIAs) has led to their use in cancer treatment and other medical applications. Their biosynthesis has involved the formation of reactive intermediates by responsible enzymes to elaborate several different chemical scaffolds. Modification of scaffolds through different substitution reactions has produced chemically diverse MIAs and related biological activities. The present study characterizes the three-step pathway involved in the formation of (+)-echitovenine, the major O-acetylated MIA of Catharanthus roseus roots, and differentiates it from a parallel pathway involved in the formation of hörhammericine. Separate hydrolases convert a common reactive MIA intermediate to aspidosperma skeletons of opposite specific rotations, that is (+)-vincadifformine and (-)-tabersonine, respectively. The formation of (+) minovincinine from (+) vincadifformine 19-hydroxylase (V19H) is catalyzed by a root-specific cytochrome P450 with high amino acid sequence similarity to the leaf-specific tabersonine-3-hydroxylase involved in vindoline biosynthesis. Similarly, O-acetylation of (+)-minovincinine to form (+) echitovenine involves minovincinine-O-acetytransferase. The substrate specificity of V19H and MAT for their respective (+)-enantiomers defines the separate enantiomer-specific pathway involved in (+)-echitovenine biosynthesis and differentiates it from a parallel (-)-enantiomer-specific pathway involved in the formation of hörhammericine from (-)-tabersonine. << Less
Plant J. 99:626-636(2019) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.