Reaction participants Show >> << Hide
- Name help_outline (+)-minovincinine Identifier CHEBI:144371 Charge 1 Formula C21H27N2O3 InChIKeyhelp_outline BKMGDPNQILJWLI-ODVVLEEXSA-O SMILEShelp_outline C=1(C[C@@]2([C@]3([NH+](CCC2)CC[C@@]43C5=C(NC41)C=CC=C5)[H])[C@H](C)O)C(=O)OC 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 409 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (+)-echitovenine Identifier CHEBI:144379 Charge 1 Formula C23H29N2O4 InChIKeyhelp_outline UELNVPGLHDEZFM-WWGYGDJHSA-O SMILEShelp_outline C=1(C[C@@]2([C@]3([NH+](CCC2)CC[C@@]43C5=C(NC41)C=CC=C5)[H])C(C)OC(=O)C)C(=O)OC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,623 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:61080 | RHEA:61081 | RHEA:61082 | RHEA:61083 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
A BAHD acyltransferase catalyzing 19-O-acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids.
Carqueijeiro I., Duge de Bernonville T., Lanoue A., Dang T.-T., Teijaro C.N., Paetz C., Billet K., Mosquera A., Oudin A., Besseau S., Papon N., Glevarec G., Atehortua L., Clastre M., Giglioli-Guivarc'h N., Schneider B., St-Pierre B., Andrade R.B., O'Connor S.E., Courdavault V.
While the characterization of the biosynthetic pathway of monoterpene indole alkaloids (MIAs) in leaves of Catharanthus roseus is now reaching completion, only two enzymes from the root counterpart dedicated to tabersonine metabolism have been identified to date, namely tabersonine 19-hydroxylase ... >> More
While the characterization of the biosynthetic pathway of monoterpene indole alkaloids (MIAs) in leaves of Catharanthus roseus is now reaching completion, only two enzymes from the root counterpart dedicated to tabersonine metabolism have been identified to date, namely tabersonine 19-hydroxylase (T19H) and minovincine 19-O-acetyltransferase (MAT). Albeit the recombinant MAT catalyzes MIA acetylation at low efficiency in vitro, we demonstrated that MAT was inactive when expressed in yeast and in planta, suggesting an alternative function for this enzyme. Therefore, through transcriptomic analysis of periwinkle adventitious roots, several other BAHD acyltransferase candidates were identified based on the correlation of their expression profile with T19H and found to localize in small genomic clusters. Only one, named tabersonine derivative 19-O-acetyltransferase (TAT) was able to acetylate the 19-hydroxytabersonine derivatives from roots, such as minovincinine and hörhammericine, following expression in yeast. Kinetic studies also showed that the recombinant TAT was specific for root MIAs and displayed an up to 200-fold higher catalytic efficiency than MAT. In addition, gene expression analysis, protein subcellular localization and heterologous expression in Nicotiana benthamiana were in agreement with the prominent role of TAT in acetylation of root-specific MIAs, thereby redefining the molecular determinants of the root MIA biosynthetic pathway. Finally, identification of TAT provided a convenient tool for metabolic engineering of MIAs in yeast enabling efficiently mixing different biosynthetic modules spatially separated in the whole plant. This combinatorial synthesis associating several enzymes from Catharanthus roseus resulted in the conversion of tabersonine in tailor-made MIAs bearing both leaf and root-type decorations. << Less
Plant J. 94:469-484(2018) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Molecular and biochemical analysis of a Madagascar periwinkle root-specific minovincinine-19-hydroxy-O-acetyltransferase.
Laflamme P., St-Pierre B., De Luca V.
The terminal steps in the biosynthesis of the monoterpenoid indole alkaloids vindoline and minovincinine are catalyzed by separate acetyl coenzyme A-dependent O-acetyltransferases in Madagascar periwinkle (Catharanthus roseus G. Don). Two genes were isolated that had 63% nucleic acid identity and ... >> More
The terminal steps in the biosynthesis of the monoterpenoid indole alkaloids vindoline and minovincinine are catalyzed by separate acetyl coenzyme A-dependent O-acetyltransferases in Madagascar periwinkle (Catharanthus roseus G. Don). Two genes were isolated that had 63% nucleic acid identity and whose deduced amino acid sequences were 78% identical. Active enzymes that were expressed as recombinant His-tagged proteins in Escherichia coli were named minovincinine-19-O-acetyltransferase (MAT) and deacetylvindoline-4-O-acetyltransferase (DAT) because they catalyzed the 19-O-acetylation of indole alkaloids such as minovincinine and hörhammericine and the 4-O-acetylation of deacetylvindoline, respectively. Kinetic studies showed that the catalytic efficiency of recombinant MAT (rMAT) was very poor compared with that of recombinant DAT (rDAT), whose turnover rates for Acetyl-coenzyme A and deacetylvindoline were approximately 240- and 10,000-fold greater than those of rMAT. Northern-blot analyses showed that MAT is expressed in cortical cells of the root tip, whereas DAT is only expressed in specialized idioblast and laticifer cells within light exposed tissues like leaves and stems. The coincident expression of trytophan decarboxylase, strictosidine synthase, and MAT within root cortical cells suggests that the entire pathway for the biosynthesis of tabersonine and its substituted analogs occurs within these cells. The ability of MAT to catalyze the 4-O-acetylation of deacetylvindoline with low efficiency suggests that this enzyme, rather than DAT, is involved in vindoline biosynthesis within transformed cell and root cultures, which accumulate low levels of this alkaloid under certain circumstances. << Less
Plant Physiol. 125:189-198(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The assembly of (+)-vincadifformine- and (-)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways.
Williams D., Qu Y., Simionescu R., De Luca V.
The biological activity of monoterpenoid indole alkaloids (MIAs) has led to their use in cancer treatment and other medical applications. Their biosynthesis has involved the formation of reactive intermediates by responsible enzymes to elaborate several different chemical scaffolds. Modification o ... >> More
The biological activity of monoterpenoid indole alkaloids (MIAs) has led to their use in cancer treatment and other medical applications. Their biosynthesis has involved the formation of reactive intermediates by responsible enzymes to elaborate several different chemical scaffolds. Modification of scaffolds through different substitution reactions has produced chemically diverse MIAs and related biological activities. The present study characterizes the three-step pathway involved in the formation of (+)-echitovenine, the major O-acetylated MIA of Catharanthus roseus roots, and differentiates it from a parallel pathway involved in the formation of hörhammericine. Separate hydrolases convert a common reactive MIA intermediate to aspidosperma skeletons of opposite specific rotations, that is (+)-vincadifformine and (-)-tabersonine, respectively. The formation of (+) minovincinine from (+) vincadifformine 19-hydroxylase (V19H) is catalyzed by a root-specific cytochrome P450 with high amino acid sequence similarity to the leaf-specific tabersonine-3-hydroxylase involved in vindoline biosynthesis. Similarly, O-acetylation of (+)-minovincinine to form (+) echitovenine involves minovincinine-O-acetytransferase. The substrate specificity of V19H and MAT for their respective (+)-enantiomers defines the separate enantiomer-specific pathway involved in (+)-echitovenine biosynthesis and differentiates it from a parallel (-)-enantiomer-specific pathway involved in the formation of hörhammericine from (-)-tabersonine. << Less
Plant J. 99:626-636(2019) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.