Enzymes
| UniProtKB help_outline | 1 proteins |
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline steviolbioside Identifier CHEBI:145009 Charge -1 Formula C32H49O13 InChIKeyhelp_outline OMHUCGDTACNQEX-OSHKXICASA-M SMILEShelp_outline O=C([C@]1([C@@]2([C@]([C@]3([C@]4(C[C@@](CC3)(C(C4)=C)O[C@H]5[C@H](O[C@H]6[C@H](O)[C@H]([C@H](O)[C@H](O6)CO)O)[C@H]([C@H](O)[C@H](O5)CO)O)CC2)[H])(CCC1)C)[H])C)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucose Identifier CHEBI:58885 (Beilstein: 3827329) help_outline Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-JZMIEXBBSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 258 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline rebaudioside B Identifier CHEBI:145013 Charge -1 Formula C38H59O18 InChIKeyhelp_outline DRSKVOAJKLUMCL-MMUIXFKXSA-M SMILEShelp_outline [H][C@@]12CC[C@@]3(C[C@]1(CC3=C)CC[C@]1([H])[C@@](C)(CCC[C@@]21C)C([O-])=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@H]1O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 637 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:61752 | RHEA:61753 | RHEA:61754 | RHEA:61755 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| Gene Ontology help_outline | ||||
| MetaCyc help_outline |
Publications
-
Molecular basis for branched steviol glucoside biosynthesis.
Lee S.G., Salomon E., Yu O., Jez J.M.
Steviol glucosides, such as stevioside and rebaudioside A, are natural products roughly 200-fold sweeter than sugar and are used as natural, noncaloric sweeteners. Biosynthesis of rebaudioside A, and other related stevia glucosides, involves formation of the steviol diterpenoid followed by a serie ... >> More
Steviol glucosides, such as stevioside and rebaudioside A, are natural products roughly 200-fold sweeter than sugar and are used as natural, noncaloric sweeteners. Biosynthesis of rebaudioside A, and other related stevia glucosides, involves formation of the steviol diterpenoid followed by a series of glycosylations catalyzed by uridine diphosphate (UDP)-dependent glucosyltransferases. UGT76G1 from <i>Stevia rebaudiana</i> catalyzes the formation of the branched-chain glucoside that defines the stevia molecule and is critical for its high-intensity sweetness. Here, we report the 3D structure of the UDP-glucosyltransferase UGT76G1, including a complex of the protein with UDP and rebaudioside A bound in the active site. The X-ray crystal structure and biochemical analysis of site-directed mutants identifies a catalytic histidine and how the acceptor site of UGT76G1 achieves regioselectivity for branched-glucoside synthesis. The active site accommodates a two-glucosyl side chain and provides a site for addition of a third sugar molecule to the C3' position of the first C13 sugar group of stevioside. This structure provides insight on the glycosylation of other naturally occurring sweeteners, such as the mogrosides from monk fruit, and a possible template for engineering of steviol biosynthesis. << Less
Proc. Natl. Acad. Sci. U.S.A. 116:13131-13136(2019) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana.
Richman A., Swanson A., Humphrey T., Chapman R., McGarvey B., Pocs R., Brandle J.
Stevia rebaudiana leaves accumulate a mixture of at least eight different steviol glycosides. The pattern of glycosylation heavily influences the taste perception of these intensely sweet compounds. The majority of the glycosides are formed by four glucosylation reactions that start with steviol a ... >> More
Stevia rebaudiana leaves accumulate a mixture of at least eight different steviol glycosides. The pattern of glycosylation heavily influences the taste perception of these intensely sweet compounds. The majority of the glycosides are formed by four glucosylation reactions that start with steviol and end with rebaudioside A. The steps involve the addition of glucose to the C-13 hydroxyl of steviol, the transfer of glucose to the C-2' and C-3' of the 13-O-glucose and the addition of glucose to the hydroxyl of the C-4 carboxyl group. We used our collection of ESTs, an UDP-glucosyltransferase (UGT)-specific electronic probe and key word searches to identify candidate genes resident in our collection. Fifty-four expressed sequence tags (ESTs) belonging to 17 clusters were found using this procedure. We isolated full length cDNAs for 12 of the UGTs, cloned them into an expression vector, and produced recombinant enzymes in Escherichia coli. An in vitro glucosyltransferase activity enzyme assay was conducted using quercetin, kaempferol, steviol, steviolmonoside, steviolbioside, and stevioside as sugar acceptors, and (14)C-UDP-glucose as the donor. Thin layer chromatography was used to separate the products and three of the recombinant enzymes produced labelled products that co-migrated with known standards. HPLC and LC-ES/MS were then used to further define those reaction products. We determined that steviol UGTs behave in a regioselective manner and propose a modified pathway for the synthesis of rebaudioside A from steviol. << Less
Plant J. 41:56-67(2005) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations.
Yang T., Zhang J., Ke D., Yang W., Tang M., Jiang J., Cheng G., Li J., Cheng W., Wei Y., Li Q., Naismith J.H., Zhu X.
Diets high in sugar are recognized as a serious health problem, and there is a drive to reduce their consumption. Steviol glycosides are natural zero-calorie sweeteners, but the most desirable ones are biosynthesized with low yields. UGT76G1 catalyzes the β (1-3) addition of glucose to steviol gly ... >> More
Diets high in sugar are recognized as a serious health problem, and there is a drive to reduce their consumption. Steviol glycosides are natural zero-calorie sweeteners, but the most desirable ones are biosynthesized with low yields. UGT76G1 catalyzes the β (1-3) addition of glucose to steviol glycosides, which gives them the preferred taste. UGT76G1 is able to transfer glucose to multiple steviol substrates yet remains highly specific in the glycosidic linkage it creates. Here, we report multiple complex structures of the enzyme combined with biochemical data, which reveal that the enzyme utilizes hydrophobic interactions for substrate recognition. The lack of a strict three-dimensional recognition arrangement, typical of hydrogen bonds, permits two different orientations for β (1-3) sugar addition. The use of hydrophobic recognition is unusual in a regio- and stereo-specific catalysis. Harnessing such non-specific hydrophobic interactions could have wide applications in the synthesis of complex glycoconjugates. << Less
Nat. Commun. 10:3214-3214(2019) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.