Reaction participants Show >> << Hide
- Name help_outline 3-(4-hydroxyphenyl)pyruvate Identifier CHEBI:36242 (Beilstein: 3950858) help_outline Charge -1 Formula C9H7O4 InChIKeyhelp_outline KKADPXVIOXHVKN-UHFFFAOYSA-M SMILEShelp_outline Oc1ccc(CC(=O)C([O-])=O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,929 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,328 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline aspulvinone E Identifier CHEBI:58240 Charge -1 Formula C17H11O5 InChIKeyhelp_outline BNNVVTQUWNGKPH-ZROIWOOFSA-M SMILEShelp_outline Oc1ccc(cc1)\C=C1OC(=O)C(=C/1[O-])c1ccc(O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 3,001 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 529 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,058 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,188 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:63824 | RHEA:63825 | RHEA:63826 | RHEA:63827 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Production of alpha-keto carboxylic acid dimers in yeast by overexpression of NRPS-like genes from Aspergillus terreus.
Huehner E., Backhaus K., Kraut R., Li S.M.
Non-ribosomal peptide synthetases (NRPSs) are key enzymes in microorganisms for the assembly of peptide backbones of biologically and pharmacologically active natural products. The monomodular NRPS-like enzymes comprise often an adenylation (A), a thiolation (T), and a thioesterase (TE) domain. In ... >> More
Non-ribosomal peptide synthetases (NRPSs) are key enzymes in microorganisms for the assembly of peptide backbones of biologically and pharmacologically active natural products. The monomodular NRPS-like enzymes comprise often an adenylation (A), a thiolation (T), and a thioesterase (TE) domain. In contrast to the NRPSs, they do not contain any condensation domain and usually catalyze a dimerization of α-keto carboxylic acids and thereby provide diverse scaffolds for further modifications. In this study, we established an expression system for NRPS-like genes in Saccharomyces cerevisiae. By expression of four known genes from Aspergillus terreus, their predicted function was confirmed and product yields of up to 35 mg per liter culture were achieved. Furthermore, expression of ATEG_03090 from the same fungus, encoding for the last uncharacterized NRPS-like enzyme with an A-T-TE domain structure, led to the formation of the benzoquinone derivative atromentin. All the accumulated products were isolated and their structures were elucidated by NMR and MS analyses. This study provides a convenient system for proof of gene function as well as a basis for synthetic biology, since additional genes encoding modification enzymes can be introduced. << Less
Appl. Microbiol. Biotechnol. 102:1663-1672(2018) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
A non-canonical melanin biosynthesis pathway protects Aspergillus terreus conidia from environmental stress.
Geib E., Gressler M., Viediernikova I., Hillmann F., Jacobsen I.D., Nietzsche S., Hertweck C., Brock M.
Melanins are ubiquitous pigments found in all kingdoms of life. Most organisms use them for protection from environmental stress, although some fungi employ melanins as virulence determinants. The human pathogenic fungus Aspergillus fumigatus and related Ascomycetes produce dihydroxynaphthalene-(D ... >> More
Melanins are ubiquitous pigments found in all kingdoms of life. Most organisms use them for protection from environmental stress, although some fungi employ melanins as virulence determinants. The human pathogenic fungus Aspergillus fumigatus and related Ascomycetes produce dihydroxynaphthalene-(DHN) melanin in their spores, the conidia, and use it to inhibit phagolysosome acidification. However, biosynthetic origin of melanin in a related fungus, Aspergillus terreus, has remained a mystery because A. terreus lacks genes for synthesis of DHN-melanin. Here we identify genes coding for an unusual NRPS-like enzyme (MelA) and a tyrosinase (TyrP) that A. terreus expressed under conidiation conditions. We demonstrate that MelA produces aspulvinone E, which is activated for polymerization by TyrP. Functional studies reveal that this new pigment, Asp-melanin, confers resistance against UV light and hampers phagocytosis by soil amoeba. Unexpectedly, Asp-melanin does not inhibit acidification of phagolysosomes, thus likely contributing specifically to survival of A. terreus conidia in acidic environments. << Less
Cell Chem. Biol. 23:587-597(2016) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.