Reaction participants Show >> << Hide
- Name help_outline (R)-lanthionine ketimine Identifier CHEBI:176891 Charge -2 Formula C6H5NO4S InChIKeyhelp_outline XIVVIYYWXOMYOD-VKHMYHEASA-L SMILEShelp_outline [O-]C(=O)[C@@H]1CSCC(=N1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,329 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (3R,5R)-1,4-thiomorpholine-3,5-dicarboxylate Identifier CHEBI:176892 Charge -1 Formula C6H8NO4S InChIKeyhelp_outline MHRLWUPLSHYLOK-IMJSIDKUSA-M SMILEShelp_outline [O-]C(=O)[C@@H]1CSC[C@H]([NH2+]1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,335 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:68040 | RHEA:68041 | RHEA:68042 | RHEA:68043 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Purification and characterization of a ketimine-reducing enzyme.
Nardini M., Ricci G., Caccuri A.M., Solinas S.P., Vesci L., Cavallini D.
An NAD(P)H-dependent reductase able to reduce a new class of cyclic unsaturated compounds named ketimines has been detected and purified 2500-fold from pig kidney. Some molecular and kinetic properties of this enzyme have been determined. The enzymatic reduction proceeds with a classical ping-pong ... >> More
An NAD(P)H-dependent reductase able to reduce a new class of cyclic unsaturated compounds named ketimines has been detected and purified 2500-fold from pig kidney. Some molecular and kinetic properties of this enzyme have been determined. The enzymatic reduction proceeds with a classical ping-pong mechanism and some results suggest that the true substrate has the ketiminic structure and is in equilibrium with the enaminic and keto-open forms. As previously described, ketimines arise from the deamination of a number of sulfur-containing amino acids, i.e. L-cystathionine, L-lanthionine and S-aminoethyl-L-cysteine, catalyzed by a widespread mammalian transaminase. The enzymatic reduction products of ketimines have been identified as cyclothionine, 1,4-thiomorpholine 3,5-dicarboxylic acid and 1,4-thiomorpholine 3-carboxylic acid. Some of these compounds have been detected in mammals, thus suggesting a possible role of this enzyme in their biosynthesis. << Less
Eur J Biochem 173:689-694(1988) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Insights into enzyme catalysis and thyroid hormone regulation of cerebral ketimine reductase/mu-crystallin under physiological conditions.
Hallen A., Cooper A.J., Jamie J.F., Karuso P.
Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioa ... >> More
Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels. << Less
Neurochem. Res. 40:1252-1266(2015) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.