Enzymes
| UniProtKB help_outline | 903 proteins |
Reaction participants Show >> << Hide
- Name help_outline glyoxylate Identifier CHEBI:36655 (Beilstein: 3903641) help_outline Charge -1 Formula C2HO3 InChIKeyhelp_outline HHLFWLYXYJOTON-UHFFFAOYSA-M SMILEShelp_outline [H]C(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 88 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-phenylalanine Identifier CHEBI:58095 Charge 0 Formula C9H11NO2 InChIKeyhelp_outline COLNVLDHVKWLRT-QMMMGPOBSA-N SMILEShelp_outline [NH3+][C@@H](Cc1ccccc1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 78 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-phenylpyruvate Identifier CHEBI:18005 (Beilstein: 3944391) help_outline Charge -1 Formula C9H7O3 InChIKeyhelp_outline BTNMPGBKDVTSJY-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)C(=O)Cc1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 33 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycine Identifier CHEBI:57305 Charge 0 Formula C2H5NO2 InChIKeyhelp_outline DHMQDGOQFOQNFH-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 152 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:69120 | RHEA:69121 | RHEA:69122 | RHEA:69123 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Removal of phosphoglycolate in hyperthermophilic archaea.
Michimori Y., Izaki R., Su Y., Fukuyama Y., Shimamura S., Nishimura K., Miwa Y., Hamakita S., Shimosaka T., Makino Y., Takeno R., Sato T., Beppu H., Cann I., Kanai T., Nunoura T., Atomi H.
Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurren ... >> More
Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon <i>Thermococcus kodakarensis</i>, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. <i>T. kodakarensis</i> harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in <i>T. kodakarensis</i> cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when <i>T. kodakarensis</i> was grown under microaerobic conditions. The results suggest that <i>T. kodakarensis</i> removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in <i>T. kodakarensis</i> functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle. << Less
Proc Natl Acad Sci U S A 121:e2311390121-e2311390121(2024) [PubMed] [EuropePMC]
This publication is cited by 21 other entries.
-
Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II.
Han Q., Cai T., Tagle D.A., Robinson H., Li J.
KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-o ... >> More
KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity. << Less
Biosci. Rep. 28:205-215(2008) [PubMed] [EuropePMC]
This publication is cited by 26 other entries.
-
Comparative characterization of Aedes 3-hydroxykynurenine transaminase/alanine glyoxylate transaminase and Drosophila serine pyruvate aminotransferase.
Han Q., Li J.
This study describes the comparative analysis of two insect recombinant aminotransferases, Aedes aegypti 3-hydroxykynurenine (3-HK) transaminase/alanine glyoxylate aminotransferase (Ae-HKT/AGT) and Drosophila melanogaster serine pyruvate aminotransferase (Dm-Spat), which share 52% identity in thei ... >> More
This study describes the comparative analysis of two insect recombinant aminotransferases, Aedes aegypti 3-hydroxykynurenine (3-HK) transaminase/alanine glyoxylate aminotransferase (Ae-HKT/AGT) and Drosophila melanogaster serine pyruvate aminotransferase (Dm-Spat), which share 52% identity in their amino acid sequences. Both enzymes showed AGT activity. In addition, Ae-HKT/AGT is also able to catalyze the transamination of 3-HK or kynurenine with glyoxylate, pyruvate or oxaloacetate as the amino acceptor. Kinetic analysis and other data suggest that Ae-HKT/AGT plays a critical role in mosquito tryptophan catabolism by detoxifying 3-HK and that Dm-Spat is primarily involved in glyoxylate detoxification. << Less
FEBS Lett. 527:199-204(2002) [PubMed] [EuropePMC]
This publication is cited by 19 other entries.