Reaction participants Show >> << Hide
- Name help_outline (Z)-4-methylsulfanylbutyl-N-(sulfonatooxy)methanimidothioate Identifier CHEBI:183222 Charge -1 Formula C6H12NO4S3 InChIKeyhelp_outline ASMOKNJFABYERB-UHFFFAOYSA-M SMILEShelp_outline [S-]/C(=[NH+]\OS([O-])(=O)=O)/CCCCSC 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-methylsulfanylbutyl isothionate Identifier CHEBI:180130 (CAS: 4430-36-8) help_outline Charge 0 Formula C6H11NS2 InChIKeyhelp_outline IHQDGXUYTSZGOG-UHFFFAOYSA-N SMILEShelp_outline S(CCCCN=C=S)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sulfate Identifier CHEBI:16189 (CAS: 14808-79-8) help_outline Charge -2 Formula O4S InChIKeyhelp_outline QAOWNCQODCNURD-UHFFFAOYSA-L SMILEShelp_outline [O-]S([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 91 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:69324 | RHEA:69325 | RHEA:69326 | RHEA:69327 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense.
Kuchernig J.-C., Backenkoehler A., Luebbecke M., Burow M., Wittstock U.
Glucosinolates, amino acid-derived thioglycosides found in plants of the Brassicales order, are one of the best studied classes of plant secondary metabolites. Together with myrosinases and supplementary proteins known as specifier proteins, they form the glucosinolate-myrosinase system that upon ... >> More
Glucosinolates, amino acid-derived thioglycosides found in plants of the Brassicales order, are one of the best studied classes of plant secondary metabolites. Together with myrosinases and supplementary proteins known as specifier proteins, they form the glucosinolate-myrosinase system that upon tissue damage gives rise to a number of biologically active glucosinolate breakdown products such as isothiocyanates, epithionitriles and organic thiocyanates involved in plant defense. While isothiocyanates are products of the spontaneous rearrangement of the glucosinolate aglycones released by myrosinase, the formation of epithionitriles and organic thiocyanates depends on both myrosinases and specifier proteins. Hydrolysis product profiles of many glucosinolate-containing plant species indicate the presence of specifier proteins, but only few have been identified and characterized biochemically. Here, we report on cDNA cloning, heterologous expression and characterization of TaTFP, a thiocyanate-forming protein (TFP) from Thlaspi arvense L. (Brassicaceae), that is expressed in all plant organs and can be purified in active form after heterologous expression in Escherichia coli. As a special feature, this protein promotes the formation of allylthiocyanate as well as the corresponding epithionitrile upon myrosinase-catalyzed hydrolysis of allylglucosinolate, the major glucosinolate of T. arvense. All other glucosinolates tested are converted to their simple nitriles when hydrolyzed in the presence of TaTFP. Despite its ability to promote allylthiocyanate formation, TaTFP has a higher amino acid sequence similarity to known epithiospecifier proteins (ESPs) than to Lepidium sativum TFP. However, unlike Arabidopsis thaliana ESP, its activity in vitro is not strictly dependent on Fe²⁺ addition to the assay mixtures. The availability of TaTFP in purified form enables future studies to be aimed at elucidating the structural bases of specifier protein specificities and mechanisms. Furthermore, identification of TaTFP shows that product specificities of specifier proteins can not be predicted based on amino acid sequence similarity and raises interesting questions about specifier protein evolution. << Less
Phytochemistry 72:1699-1709(2011) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein.
Burow M., Bergner A., Gershenzon J., Wittstock U.
Glucosinolates are a class of thioglycosides found predominantly in plants of the order Brassicales whose function in anti-herbivore defense has been attributed to the products formed by myrosinase-catalyzed hydrolysis upon plant tissue damage. The most common type of hydrolysis products, the isot ... >> More
Glucosinolates are a class of thioglycosides found predominantly in plants of the order Brassicales whose function in anti-herbivore defense has been attributed to the products formed by myrosinase-catalyzed hydrolysis upon plant tissue damage. The most common type of hydrolysis products, the isothiocyanates, are toxic to a wide range of organisms. Depending on the glucosinolate side-chain structure and the presence of certain protein factors, other types of hydrolysis products, such as simple nitriles, epithionitriles and organic thiocyanates, can be formed whose biological functions are not well understood. Of the proteins controlling glucosinolate hydrolysis, only epithiospecifier proteins (ESPs) that promote the formation of simple nitriles and epithionitriles have been identified on a molecular level. We investigated glucosinolate hydrolysis in Lepidium sativum and identified a thiocyanate-forming protein (TFP) that shares 63-68% amino acid sequence identity with known ESPs and up to 55% identity with myrosinase-binding proteins from Arabidopsis thaliana, but differs from ESPs in its biochemistry. TFP does not only catalyze thiocyanate and simple nitrile formation from benzylglucosinolate but also the formation of simple nitriles and epithionitriles from aliphatic glucosinolates. Analyses of glucosinolate hydrolysis products in L. sativum autolysates and TFP transcript accumulation revealed an organ-specific regulation of thiocyanate formation. The identification of TFP defines a new family of proteins that control glucosinolate hydrolysis and challenges the previously proposed reaction mechanism of epithionitrile formation. As a protein that promotes the formation of a wide variety of hydrolysis products, its identification provides an important tool for further elucidating the mechanisms of glucosinolate hydrolysis as well as the ecological role and the evolutionary origin of the glucosinolate-myrosinase system. << Less
Plant Mol. Biol. 63:49-61(2007) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
Comments
This reaction can occur spontaneously.