Enzymes
| UniProtKB help_outline | 841 proteins |
| Enzyme class help_outline |
|
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
N-terminal L-methionyl-[tubulin]
Identifier
RHEA-COMP:17729
Reactive part
help_outline
- Name help_outline N-terminal L-methionine residue Identifier CHEBI:64731 Charge 1 Formula C5H11NOS SMILEShelp_outline O=C(*)[C@@H]([NH3+])CCSC 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 381 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N-terminal Nα-acetyl-L-methionyl-[tubulin]
Identifier
RHEA-COMP:17730
Reactive part
help_outline
- Name help_outline N-terminal Nα-acetyl-L-methionine residue Identifier CHEBI:133414 Charge 0 Formula C7H12NO2S SMILEShelp_outline C(=O)([C@@H](NC(=O)C)CCSC)* 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,567 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:69607 | RHEA:69608 | RHEA:69609 | RHEA:69610 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Novel function of N-acetyltransferase for microtubule stability and JNK signaling in Drosophila organ development.
Mok J.W., Choi K.W.
Regulation of microtubule stability is crucial for the maintenance of cell structure and function. While the acetylation of α-tubulin lysine 40 by acetylase has been implicated in the regulation of microtubule stability, the in vivo functions of N-terminal acetyltransferases (NATs) involved in the ... >> More
Regulation of microtubule stability is crucial for the maintenance of cell structure and function. While the acetylation of α-tubulin lysine 40 by acetylase has been implicated in the regulation of microtubule stability, the in vivo functions of N-terminal acetyltransferases (NATs) involved in the acetylation of N-terminal amino acids are not well known. Here, we identify an N-terminal acetyltransferase, Mnat9, that regulates cell signaling and microtubule stability in <i>Drosophila</i> Loss of Mnat9 causes severe developmental defects in multiple tissues. In the wing imaginal disc, <i>Mnat9 RNAi</i> leads to the ectopic activation of c-Jun N-terminal kinase (JNK) signaling and apoptotic cell death. These defects are suppressed by reducing the level of JNK signaling. Overexpression of Mnat9 can also inhibit JNK signaling. Mnat9 colocalizes with mitotic spindles, and its loss results in various spindle defects during mitosis in the syncytial embryo. Furthermore, overexpression of Mnat9 enhances microtubule stability. Mnat9 is physically associated with microtubules and shows a catalytic activity in acetylating N-terminal peptides of α- and β-tubulin in vitro. Cell death and tissue loss in Mnat9-depleted wing discs are restored by reducing the severing protein Spastin, suggesting that Mnat9 protects microtubules from its severing activity. Remarkably, Mnat9 mutated in the acetyl-CoA binding site is as functional as its wild-type form. We also find that human NAT9 can rescue <i>Mnat9 RNAi</i> phenotypes in flies, indicating their functional conservation. Taken together, we propose that Mnat9 is required for microtubule stability and regulation of JNK signaling to promote cell survival in developing <i>Drosophila</i> organs. << Less
Proc. Natl. Acad. Sci. U.S.A. 118:0-0(2021) [PubMed] [EuropePMC]