Enzymes
| UniProtKB help_outline | 187 proteins |
Reaction participants Show >> << Hide
- Name help_outline (R)-octopamine Identifier CHEBI:141486 Charge 1 Formula C8H12NO2 InChIKeyhelp_outline QHGUCRYDKWKLMG-QMMMGPOBSA-O SMILEShelp_outline C1([C@@H](O)C[NH3+])=CC=C(O)C=C1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 938 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (R)-synephrine Identifier CHEBI:63694 Charge 1 Formula C9H14NO2 InChIKeyhelp_outline YRCWQPVGYLYSOX-VIFPVBQESA-O SMILEShelp_outline C[NH2+]C[C@H](O)c1ccc(O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 854 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:70519 | RHEA:70520 | RHEA:70521 | RHEA:70522 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Human phenylethanolamine N-methyltransferase pharmacogenomics: gene re-sequencing and functional genomics.
Ji Y., Salavaggione O.E., Wang L., Adjei A.A., Eckloff B., Wieben E.D., Weinshilboum R.M.
Phenylethanolamine N-methyltransferase (PNMT, EC2.1.1.28) catalyzes the N-methylation of norepinephrine to form epinephrine. As a step toward understanding the possible contribution of inheritance to individual variation in PNMT-catalyzed epinephrine formation, we 're-sequenced' the entire human P ... >> More
Phenylethanolamine N-methyltransferase (PNMT, EC2.1.1.28) catalyzes the N-methylation of norepinephrine to form epinephrine. As a step toward understanding the possible contribution of inheritance to individual variation in PNMT-catalyzed epinephrine formation, we 're-sequenced' the entire human PNMT gene, including the three exons, the introns and approximately 1 kb of the 5'-flanking region (5'-FR), using DNA samples from 60 African-American (AA) and 60 Caucasian-American (CA) subjects. Within the 3.5 kb re-sequenced, 18 single nucleotide polymorphisms (SNPs) were observed, including four non-synonymous coding SNPs (cSNPs) that resulted in the following alterations in encoded amino acid sequence: Asn9Ser, Thr98Ala, Arg112Cys and Ala175Thr. When constructs for the non-synonymous cSNPs were transiently expressed in COS-1 cells, the Ala98 allozyme displayed significantly lower levels of both activity and immunoreactive protein (p < 0.002) than did the wild-type (WT) enzyme due, at least in part, to accelerated protein degradation by a proteasome-mediated process. Luciferase reporter gene constructs were also created for the six common PNMT 5'-FR haplotypes observed. Significant differences were observed among haplotypes in their ability to drive transcription. These observations raise the possibility of inherited variation in the ability to form epinephrine from norepinephrine as a result of variant PNMT polymorphisms and haplotypes. << Less
J. Neurochem. 95:1766-1776(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and properties of phenylethanolamine-N-methyl transferase.
Axelrod J.
J. Biol. Chem. 237:1657-1660(1962) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Mode of binding of methyl acceptor substrates to the adrenaline-synthesizing enzyme phenylethanolamine N-methyltransferase: implications for catalysis.
Gee C.L., Tyndall J.D.A., Grunewald G.L., Wu Q., McLeish M.J., Martin J.L.
Here we report three crystal structure complexes of human phenylethanolamine N-methyltransferase (PNMT), one bound with a substrate that incorporates a flexible ethanolamine side chain (p-octopamine), a second bound with a semirigid analogue substrate [cis-(1R,2S)-2-amino-1-tetralol, cis-(1R,2S)-A ... >> More
Here we report three crystal structure complexes of human phenylethanolamine N-methyltransferase (PNMT), one bound with a substrate that incorporates a flexible ethanolamine side chain (p-octopamine), a second bound with a semirigid analogue substrate [cis-(1R,2S)-2-amino-1-tetralol, cis-(1R,2S)-AT], and a third with trans-(1S,2S)-2-amino-1-tetralol [trans-(1S,2S)-AT] that acts as an inhibitor of PNMT rather than a substrate. A water-mediated interaction between the critical beta-hydroxyl of the flexible ethanolamine group of p-octopamine and an acidic residue, Asp267, is likely to play a key role in positioning the side chain correctly for methylation to occur at the amine. A second interaction with Glu219 may play a lesser role. Catalysis likely occurs via deprotonation of the amine through the action of Glu185; mutation of this residue significantly reduced the kcat without affecting the Km. The mode of binding of cis-(1R,2S)-AT supports the notion that this substrate is a conformationally restrained analogue of flexible PNMT substrates, in that it forms interactions with the enzyme similar to those observed for p-octopamine. By contrast, trans-(1S,2S)-AT, an inhibitor rather than a substrate, binds in an orientation that is flipped by 180 degrees compared with cis-(1R,2S)-AT. A consequence of this flipped binding mode is that the interactions between the hydroxyl and Asp267 and Glu219 are lost. However, the amines of inhibitor trans-(1S,2S)-AT and substrate cis-(1R,2S)-AT are both within methyl transfer distance of the cofactor. These results suggest that PNMT catalyzes transfer of methyl to ligand amines only when "anchor" interactions, such as those identified for the beta-hydroxyls of p-octopamine and cis-AT, are present. << Less
Biochemistry 44:16875-16885(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.