Enzymes
UniProtKB help_outline | 2 proteins |
Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,148 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-methylputrescine Identifier CHEBI:58039 Charge 2 Formula C5H16N2 InChIKeyhelp_outline RMIVMBYMDISYFZ-UHFFFAOYSA-P SMILEShelp_outline C[NH2+]CCCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,675 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-methylaminobutanal Identifier CHEBI:190141 Charge 1 Formula C5H12NO InChIKeyhelp_outline PJZBKCVVFPTFAW-UHFFFAOYSA-O SMILEShelp_outline C[NH2+]CCCC=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 437 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 527 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:71015 | RHEA:71016 | RHEA:71017 | RHEA:71018 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Cloning and characterization of a Nicotiana tabacum methylputrescine oxidase transcript.
Heim W.G., Sykes K.A., Hildreth S.B., Sun J., Lu R.-H., Jelesko J.G.
The oxidative deamination of N-methylputrescine is an essential step in both pyridine and tropane alkaloid biosynthesis. Reverse genetic approaches have not resulted in the cloning of a methylputrescine oxidase gene (MPO). However, we have used a homology-based approach to clone a full-length toba ... >> More
The oxidative deamination of N-methylputrescine is an essential step in both pyridine and tropane alkaloid biosynthesis. Reverse genetic approaches have not resulted in the cloning of a methylputrescine oxidase gene (MPO). However, we have used a homology-based approach to clone a full-length tobacco MPO1 cDNA. The MPO1 gene is part of a small multigene family comprised of approximately six members. MPO1-like transcript levels increased in roots that were either deprived of auxin or treated with methyl jasmonic acid. Similar to other known nicotine biosynthetic genes in domesticated tobacco, MPO1-like mRNA levels were lower in roots with the mutant a and b alleles. The MPO1 protein was expressed in bacteria as a recombinant Thioredoxin-His(6)-MPO1 fusion protein. The recombinant MPO1 protein utilized N-methylputrescine more efficiently than other diamines. Therefore, the kinetic properties of the MPO1 enzyme may play an important role in determining the pyridine alkaloid profiles observed in tobacco roots. << Less
-
Molecular cloning of N-methylputrescine oxidase from tobacco.
Katoh A., Shoji T., Hashimoto T.
Nicotine biosynthesis in Nicotiana species requires an oxidative deamination of N-methylputrescine, catalyzed by N-methylputrescine oxidase (MPO). In a screen for tobacco genes that were down-regulated in a tobacco mutant with altered regulation of nicotine biosynthesis, we identified two homologo ... >> More
Nicotine biosynthesis in Nicotiana species requires an oxidative deamination of N-methylputrescine, catalyzed by N-methylputrescine oxidase (MPO). In a screen for tobacco genes that were down-regulated in a tobacco mutant with altered regulation of nicotine biosynthesis, we identified two homologous MPO cDNAs which encode diamine oxidases of a particular subclass. Tobacco MPO genes were expressed specifically in the root, and up-regulated by jasmonate treatment. Recombinant MPO protein expressed in Escherichia coli formed a homodimer and deaminated N-methylputrescine more efficiently than symmetrical diamines. These results indicate that MPO evolved from general diamine oxidases to function effectively in nicotine biosynthesis. << Less
-
Molecular evolution of N-methylputrescine oxidase in tobacco.
Naconsie M., Kato K., Shoji T., Hashimoto T.
Biosynthesis of nicotine in tobacco requires N-methylputrescine oxidase (MPO), which belongs to the copper-containing amine oxidase superfamily. Previous studies identified tobacco MPO1 and its close homolog NtDAO1 (formerly called MPO2), of which MPO1 has been shown preferentially to oxidize N-me ... >> More
Biosynthesis of nicotine in tobacco requires N-methylputrescine oxidase (MPO), which belongs to the copper-containing amine oxidase superfamily. Previous studies identified tobacco MPO1 and its close homolog NtDAO1 (formerly called MPO2), of which MPO1 has been shown preferentially to oxidize N-methylated amines. We show here that NtDAO1, as well as a homologous Arabidopsis diamine oxidase (DAO), accept non-N-methylated amines more efficiently than their corresponding N-methylated amines. MPO1 is coordinately regulated with other nicotine biosynthesis genes with regard to COI1-MYC2-dependent jasmonate induction and its dependence on nicotine-specific ERF transcription factors, whereas NtDAO1 is constitutively expressed at low basal levels in tobacco plants. Both MPO1 and NtDAO1 are targeted to peroxisomes by their C-terminal motifs, and the peroxisomal localization of MPO1 is required for it to function in nicotine biosynthesis in jasmonate-elicited cultured tobacco cells. Restricted occurrence of the MPO subfamily in Nicotiana and Solanum indicates that, during the formation of the Solanaceae, MPO has evolved from a DAO, which functions in polyamine catabolism within peroxisomes, by optimizing substrate preference and gene expression patterns to be suitable for alkaloid formation. << Less