Enzymes
| UniProtKB help_outline | 2,796 proteins |
Reaction participants Show >> << Hide
- Name help_outline L-cystine Identifier CHEBI:35491 (Beilstein: 1888247) help_outline Charge 0 Formula C6H12N2O4S2 InChIKeyhelp_outline LEVWYRKDKASIDU-IMJSIDKUSA-N SMILEShelp_outline [NH3+][C@@H](CSSC[C@H]([NH3+])C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-arginine Identifier CHEBI:32682 Charge 1 Formula C6H15N4O2 InChIKeyhelp_outline ODKSFYDXXFIFQN-BYPYZUCNSA-O SMILEShelp_outline NC(=[NH2+])NCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 80 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:71075 | RHEA:71076 | RHEA:71077 | RHEA:71078 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
The rBAT gene is responsible for L-cystine uptake via the b0,(+)-like amino acid transport system in a "renal proximal tubular" cell line (OK cells).
Mora C., Chillaron J., Calonge M.J., Forgo J., Testar X., Nunes V., Murer H., Zorzano A., Palacin M.
Several studies have shown that the cRNA of human, rabbit, or rat rBAT induces in Xenopus oocytes sodium-independent, high affinity uptake of L-cystine via a system b0,(+)-like amino acid exchanger. We have shown that mutations in rBAT cause type I cystinuria (Calonge, M. J., Gasparini, P., Chilla ... >> More
Several studies have shown that the cRNA of human, rabbit, or rat rBAT induces in Xenopus oocytes sodium-independent, high affinity uptake of L-cystine via a system b0,(+)-like amino acid exchanger. We have shown that mutations in rBAT cause type I cystinuria (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-425; Calonge, M. J., Volipini, V., Bisceglia, L., Rousaud, F., De Sanctis, L., Beccia, E., Zelante, L., Testar, X., Zorzano, A., Estivill, X., Gasparini, P., Nunes, V., and Palacín, M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9667-9671). Apart from oocytes, no other expression system has been used for transfection of functional rBAT activity. Furthermore, the b0,(+)-like transport activity has not been clearly described in the kidney or intestine. Here, we report that a "proximal tubular-like" cell line derived from opossum kidney (OK cells) expresses an rBAT transcript. Poly(A)+ RNA from OK cells induced by system b0,(+)-like transport activity in oocytes. This was hybrid-depleted by human rBAT antisense oligonucleotides. A polymerase chain reaction-amplified cDNA fragment (approximately 700 base pairs) from OK cell RNA corresponds to an rBAT protein fragment 65-69% identical to those from human, rabbit and rat kidneys. We have also examined transport of l-cystine in OK cells and found characteristics very similar to the amino acid exchanger activity induced by rBAT cRNA in oocytes. Uptake of L-cystine was of high affinity, sodium-independent and shared with L-arginine and L-leucine. It was trans-stimulated by amino acids with the same specificity as rBAT-induced transport activity in oocytes. Furthermore, it was localized to the apical pole of confluent OK cells. To demonstrate that the rBAT protein is functionally related to this transport activity, we have transfected OK cells with human rBAT antisense and sense sequences. Transfection with rBAT antisense, but not with rBAT sense, resulted in the specific reduction of rBAT mRNA expression and b0,(+)-like transport activity. These results demonstrate that rBAT is functionally related to the L-cystine uptake via system b0,(+)-like in the apical pole of the renal OK cell line. << Less
-
Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids.
Chillaron J., Estevez R., Mora C., Wagner C.A., Suessbrich H., Lang F., Gelpi J.L., Testar X., Busch A.E., Zorzano A., Palacin M.
Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine and dibasic amino acids due to their defective renal and intestinal reabsorption (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapicc ... >> More
Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine and dibasic amino acids due to their defective renal and intestinal reabsorption (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-426; Calonge, M. J., Volipini, V., Bisceglia, L., Rousaud, F., De Sanctis, L., Beccia, E., Zelante, L., Testar, X., Zorzano, A., Estivill, X., Gasparini, P., Nunes, V., and Palacín, M.(1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9667-9671). One important question that remains to be clarified is how the apparently non-concentrative system bo,+-like, associated with rBAT expression, participates in the active renal reabsorption of these amino acids. Several studies have demonstrated exchange of amino acids induced by rBAT in Xenopus oocytes. Here we offer evidence that system bo,+-like is an obligatory amino acid exchanger in oocytes and in the "renal proximal tubular" cell line OK. System bo, +-like showed a 1:1 stoichiometry of exchange, and the hetero-exchange dibasic (inward) with neutral (outward) amino acids were favored in oocytes. Obligatory exchange of amino acids via system bo,+-like fully explained the amino acid-induced current in rBAT-injected oocytes. Exchange via system bo,+-like is coupled enough to ensure a specific accumulation of substrates until the complete replacement of the internal oocyte substrates. Due to structural and functional analogies of the cell surface antigen 4F2hc to rBAT, we tested for amino acid exchange via system y+L-like. 4F2hc-injected oocytes accumulated substrates to a level higher than CAT1-injected oocytes (i.e. oocytes expressing system y+) and showed exchange of amino acids with the substrate specificity of system y+L and L-leucine-induced outward currents in the absence of extracellular sodium. In contrast to L-arginine, system y+L-like did not mediate measurable L-leucine efflux from the oocyte. We propose a role of systems bo,+-like and y+L-like in the renal reabsorption of cystine and dibasic amino acids that is based on their active tertiary transport mechanism and on the apical and basolateral localization of rBAT and 4F2hc, respectively, in the epithelial cells of the proximal tubule of the nephron. << Less
J. Biol. Chem. 271:17761-17770(1996) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.