Enzymes
UniProtKB help_outline | 4,959 proteins |
Reaction participants Show >> << Hide
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,024 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:71255 | RHEA:71256 | RHEA:71257 | RHEA:71258 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Publications
-
Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression.
Miyamoto K., Tatsumi S., Sonoda T., Yamamoto H., Minami H., Taketani Y., Takeda E.
A cDNA clone encoding a protein 69% identical in amino acid sequence with that of the Na/P(i) co-transporter NaP(i)-1 was isolated from a human kidney cDNA library. The DNA sequence was identical with that of NPT-1 cDNA published by Chong, Kristjansson, Zoghbi and Hughe (1993) (Genomics, 18, 355-3 ... >> More
A cDNA clone encoding a protein 69% identical in amino acid sequence with that of the Na/P(i) co-transporter NaP(i)-1 was isolated from a human kidney cDNA library. The DNA sequence was identical with that of NPT-1 cDNA published by Chong, Kristjansson, Zoghbi and Hughe (1993) (Genomics, 18, 355-359). In the present study, we have characterized the function of the encoded protein and the tissue distribution of its mRNA. Injection of RNA transcribed from NPT-1 into Xenopus oocytes resulted in expression of Na/P(i) co-transport activity showing a high affinity for P(i) transport (Km 0.29 mM). Kinetic characterization ([P(i)], [Na+]) demonstrated that the expressed transport activity has properties similar to those displayed by oocytes injected with human kidney poly(A)+ RNA. Northern blotting demonstrated that NPT-1 mRNA is expressed in renal cortex, liver and brain but not in other tissues. Hybrid depletion with antisense oligonucleotides to NaP(i)-3 and NPT-1 completely inhibited poly(A)+ RNA-induced Na(+)-dependent P(i) uptake in oocytes. These findings indicate that two high-affinity Na/P(i) cotransporters (NaP(i)-3 and NPT-1) are present in human kidney cortex. << Less
-
Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter.
Iharada M., Miyaji T., Fujimoto T., Hiasa M., Anzai N., Omote H., Moriyama Y.
SLC17A1 protein (NPT1) is the first identified member of the SLC17 phosphate transporter family and mediates the transmembrane cotransport of Na(+)/P(i) in oocytes. Although this protein is believed to be a renal polyspecific anion exporter, its transport properties are not well characterized. Her ... >> More
SLC17A1 protein (NPT1) is the first identified member of the SLC17 phosphate transporter family and mediates the transmembrane cotransport of Na(+)/P(i) in oocytes. Although this protein is believed to be a renal polyspecific anion exporter, its transport properties are not well characterized. Here, we show that proteoliposomes containing purified SLC17A1 transport various organic anions such as p-aminohippuric acid and acetylsalicylic acid (aspirin) in an inside positive membrane potential (Deltapsi)-dependent manner. We found that NPT1 also transported urate. The uptake characteristics were similar to that of SLC17 members in its Cl(-) dependence and inhibitor sensitivity. When arginine 138, an essential amino acid residue for members of the SLC17 family such as the vesicular glutamate transporter, was specifically mutated to alanine, the resulting mutant protein was inactive in Deltapsi-dependent anion transport. Heterologously expressed and purified human NPT1 carrying the single nucleotide polymorphism mutation that is associated with increased risk of gout in humans exhibited 32% lower urate transport activity compared with the wild type protein. These results strongly suggested that NPT1 is a Cl(-)-dependent polyspecific anion exporter involved in urate excretion under physiological conditions. << Less
J Biol Chem 285:26107-26113(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter.
Preobraschenski J., Cheret C., Ganzella M., Zander J.F., Richter K., Schenck S., Jahn R., Ahnert-Hilger G.
Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate and are thus essential for glutamatergic neurotransmission. However, VGLUTs were originally discovered as members of a transporter subfamily specific for inorganic phosphate (P<sub>i</sub>). It is still unclear how VGL ... >> More
Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate and are thus essential for glutamatergic neurotransmission. However, VGLUTs were originally discovered as members of a transporter subfamily specific for inorganic phosphate (P<sub>i</sub>). It is still unclear how VGLUTs accommodate glutamate transport coupled to an electrochemical proton gradient ΔμH<sup>+</sup> with inversely directed P<sub>i</sub> transport coupled to the Na<sup>+</sup> gradient and the membrane potential. Using both functional reconstitution and heterologous expression, we show that VGLUT transports glutamate and P<sub>i</sub> using a single substrate binding site but different coupling to cation gradients. When facing the cytoplasm, both ions are transported into synaptic vesicles in a ΔμH<sup>+</sup>-dependent fashion, with glutamate preferred over P<sub>i</sub>. When facing the extracellular space, P<sub>i</sub> is transported in a Na<sup>+</sup>-coupled manner, with glutamate competing for binding but at lower affinity. We conclude that VGLUTs have dual functions in both vesicle transmitter loading and P<sub>i</sub> homeostasis within glutamatergic neurons. << Less
Cell Rep. 23:535-545(2018) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Vesicular Glutamate Transporters (SLCA17 A6, 7, 8) Control Synaptic Phosphate Levels.
Cheret C., Ganzella M., Preobraschenski J., Jahn R., Ahnert-Hilger G.
Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate. VGLUTs were originally identified as sodium-dependent transporters of inorganic phosphate (Pi), but the physiological relevance of this activity remains unclear. Heterologous expression of all three VGLUTs greatly aug ... >> More
Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate. VGLUTs were originally identified as sodium-dependent transporters of inorganic phosphate (Pi), but the physiological relevance of this activity remains unclear. Heterologous expression of all three VGLUTs greatly augments intracellular Pi levels. Using neuronal models, we show that translocation of VGLUTs to the plasma membrane during exocytosis results in highly increased Pi uptake. VGLUT-mediated Pi influx is counteracted by Pi efflux. Synaptosomes prepared from perinatal VGLUT2<sup>-/-</sup> mice that are virtually free of VGLUTs show drastically reduced cytosolic Pi levels and fail to import Pi. Glutamate partially competes with sodium (Na<sup>+</sup>)/Pi (NaPi)-uptake mediated by VGLUTs but does not appear to be transported. A nanobody that blocks glutamate transport by binding to the cytoplasmic domain of VGLUT1 abolishes Pi transport when co-expressed with VGLUT1. We conclude that VGLUTs have a dual function that is essential for both vesicular glutamate loading and Pi restoration in neurons. << Less
-
Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa).
Virkki L.V., Forster I.C., Biber J., Murer H.
We have characterized the kinetics of substrate transport in the renal type IIa human sodium-phosphate cotransporter (NaPi-IIa). The transporter was expressed in Xenopus laevis oocytes, and steady-state and pre-steady-state currents and substrate uptakes were characterized by voltage-clamp and iso ... >> More
We have characterized the kinetics of substrate transport in the renal type IIa human sodium-phosphate cotransporter (NaPi-IIa). The transporter was expressed in Xenopus laevis oocytes, and steady-state and pre-steady-state currents and substrate uptakes were characterized by voltage-clamp and isotope flux. First, by measuring simultaneous uptake of a substrate (32Pi, 22Na) and charge in voltage-clamped oocytes, we established that the human NaPi-IIa isoform operates with a Na:Pi:charge stoichiometry of 3:1:1 and that the preferred transported Pi species is HPO4(2-). We then probed the complex interrelationship of substrates, pH, and voltage in the NaPi-IIa transport cycle by analyzing both steady-state and pre-steady-state currents. Steady-state current measurements show that the apparent HPO4(2-) affinity is voltage dependent and that this voltage dependency is abrogated by lowering the pH or the Na+ concentration. In contrast, the voltage dependency of the apparent Na+ affinity increased when pH was lowered. Pre-steady-state current analysis shows that Na+ ions bind first and influence the preferred orientation of the transporter in the absence of Pi. Pre-steady-state charge movement was partially suppressed by complete removal of Na+ from the bath, by reducing extracellular pH (both in the presence and absence of Na+), or by adding Pi (in the presence of 100 mM Na). None of these conditions suppressed charge movement completely. The results allowed us to modify previous models for the transport cycle of NaPi-II transporters by including voltage dependency of HPO4(2-) binding and proton modulation of the first Na+ binding step. << Less
Am J Physiol Renal Physiol 288:F969-81(2005) [PubMed] [EuropePMC]
-
Vesicular glutamate transporter contains two independent transport machineries.
Juge N., Yoshida Y., Yatsushiro S., Omote H., Moriyama Y.
Vesicular glutamate transporters (VGLUTs) are responsible for the vesicular storage of l-glutamate and play an essential role in glutamatergic signal transmission in the central nervous system. The molecular mechanism of the transport remains unknown. Here, we established a novel in vitro assay pr ... >> More
Vesicular glutamate transporters (VGLUTs) are responsible for the vesicular storage of l-glutamate and play an essential role in glutamatergic signal transmission in the central nervous system. The molecular mechanism of the transport remains unknown. Here, we established a novel in vitro assay procedure, which includes purification of wild and mutant VGLUT2 and their reconstitution with purified bacterial F(o)F(1)-ATPase (F-ATPase) into liposomes. Upon the addition of ATP, the proteoliposomes facilitated l-glutamate uptake in a membrane potential (DeltaPsi)-dependent fashion. The ATP-dependent l-glutamate uptake exhibited an absolute requirement for approximately 4 mm Cl(-), was sensitive to Evans blue, but was insensitive to d,l-aspartate. VGLUT2s with mutations in the transmembrane-located residues Arg(184), His(128), and Glu(191) showed a dramatic loss in l-glutamate transport activity, whereas Na(+)-dependent inorganic phosphate (P(i)) uptake remained comparable to that of the wild type. Furthermore, P(i) transport did not require Cl(-) and was not inhibited by Evans blue. Thus, VGLUT2 appears to possess two intrinsic transport machineries that are independent of each other: a DeltaPsi-dependent l-glutamate uptake and a Na(+)-dependent P(i) uptake. << Less