Reaction participants Show >> << Hide
- Name help_outline (R)-lactate Identifier CHEBI:16004 Charge -1 Formula C3H5O3 InChIKeyhelp_outline JVTAAEKCZFNVCJ-UWTATZPHSA-M SMILEShelp_outline C[C@@H](O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:71791 | RHEA:71792 | RHEA:71793 | RHEA:71794 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| MetaCyc help_outline | ||||
| EcoCyc help_outline |
Publications
-
Transport of L-lactate, D-lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli.
Nunez M.F., Kwon O., Wilson T.H., Aguilar J., Baldoma L., Lin E.C.C.
To examine the substrate specificity of the membrane transport carriers LldP (L-lactate permease) and GlcA (glycolate permease) of Escherichia coli, a mutant strain lacking their structural genes and blocked in the metabolism of the tested substrates was constructed and transformed with a plasmid ... >> More
To examine the substrate specificity of the membrane transport carriers LldP (L-lactate permease) and GlcA (glycolate permease) of Escherichia coli, a mutant strain lacking their structural genes and blocked in the metabolism of the tested substrates was constructed and transformed with a plasmid bearing either the lldP or the glcA gene. Each transformant acquired the ability to accumulate L-lactate, D-lactate, and glycolate against a high concentration gradient. Substrate accumulation was inhibited by carbonyl cyanide m-chlorophenylhydrazone, a hydrophobic proton conductor that dissipates proton motive force. Competition of (14)C-L-lactate transport by nonradioactive L-lactate, D-lactate, and glycolate in LldP synthesizing cells and competition of (14)C-glycolate transport by the same three substrates in GlcA synthesizing cells showed that both carriers effectively transported all three substrates with a K(i) value ranging from 10 to 20 microM. D-Lactate does not appear to have a permease of its own. Utilization of the compound depends mainly on LldP. << Less
Biochem. Biophys. Res. Commun. 290:824-829(2002) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Identity of a Plasmodium lactate/H(+) symporter structurally unrelated to human transporters.
Wu B., Rambow J., Bock S., Holm-Bertelsen J., Wiechert M., Soares A.B., Spielmann T., Beitz E.
Maintenance of a high glycolytic flow rate is critical for the rapid growth and virulence of malarial parasites. The parasites release two moles of lactic acid per mole of glucose as the anaerobic end product. However, the molecular identity of the Plasmodium lactate transporter is unknown. Here w ... >> More
Maintenance of a high glycolytic flow rate is critical for the rapid growth and virulence of malarial parasites. The parasites release two moles of lactic acid per mole of glucose as the anaerobic end product. However, the molecular identity of the Plasmodium lactate transporter is unknown. Here we show that a member of the microbial formate-nitrite transporter family, PfFNT, acts as a lactate/proton symporter in Plasmodium falciparum. Besides L-lactate, PfFNT transports physiologically relevant D-lactate, as well as pyruvate, acetate and formate, and is inhibited by the antiplasmodial compounds phloretin, furosemide and cinnamate derivatives, but not by p-chloromercuribenzene sulfonate (pCMBS). Our data on PfFNT monocarboxylate transport are consistent with those obtained with living parasites. Moreover, PfFNT is the only transporter of the plasmodial glycolytic pathway for which structure information is available from crystals of homologous proteins, rendering it amenable to further evaluation as a novel antimalarial drug target. << Less
Nat. Commun. 6:6284-6284(2015) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.