Enzymes
| UniProtKB help_outline | 18 proteins |
Reaction participants Show >> << Hide
- Name help_outline dehydroepiandrosterone 3-sulfate Identifier CHEBI:57905 (Beilstein: 3916013) help_outline Charge -1 Formula C19H27O5S InChIKeyhelp_outline CZWCKYRVOZZJNM-USOAJAOKSA-M SMILEShelp_outline C1[C@@]2([C@@]([C@@]3(C(C[C@@H](OS([O-])(=O)=O)CC3)=C1)C)(CC[C@]4([C@]2(CCC4=O)[H])C)[H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:71839 | RHEA:71840 | RHEA:71841 | RHEA:71842 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver.
Kullak-Ublick G.A., Ismair M.G., Stieger B., Landmann L., Huber R., Pizzagalli F., Fattinger K., Meier P.J., Hagenbuch B.
<h4>Background & aims</h4>Hepatic uptake of cholephilic organic compounds is mediated by members of the organic anion-transporting polypeptide (OATP) family. We aimed to characterize the novel OATP-B with respect to tissue distribution and hepatocellular localization and to compare its substrate s ... >> More
<h4>Background & aims</h4>Hepatic uptake of cholephilic organic compounds is mediated by members of the organic anion-transporting polypeptide (OATP) family. We aimed to characterize the novel OATP-B with respect to tissue distribution and hepatocellular localization and to compare its substrate specificity with those of OATP-A, OATP-C, and OATP8.<h4>Methods</h4>Tissue distribution and hepatocellular localization of OATP-B were analyzed by Northern blotting and immunofluorescence, respectively. Transport of 16 substrates was measured for each individual human OATP in complementary RNA-injected Xenopus laevis oocytes.<h4>Results</h4>Expression of OATP-B was most abundant in human liver, where it is localized at the basolateral membrane of hepatocytes. OATP-B, OATP-C, and OATP8 mediated high-affinity uptake of bromosulphophthalein (K(m), approximately 0.7, 0.3, and 0.4 micromol/L, respectively). OATP-B also transported estrone-3-sulfate but not bile salts. Although OATP-A, OATP-C, and OATP8 exhibit broad overlapping substrate specificities, OATP8 was unique in transporting digoxin and exhibited especially high transport activities for the anionic cyclic peptides [D-penicillamine(2,5)]enkephalin (DPDPE; opioid-receptor agonist) and BQ-123 (endothelin-receptor antagonist).<h4>Conclusions</h4>OATP-B is the third bromosulphophthalein uptake system localized at the basolateral membrane of human hepatocytes. OATP-B, OATP-C, and OATP8 account for the major part of sodium-independent bile salt, organic anion, and drug clearance of human liver. << Less
Gastroenterology 120:525-533(2001) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia.
Ballatori N., Christian W.V., Lee J.Y., Dawson P.A., Soroka C.J., Boyer J.L., Madejczyk M.S., Li N.
The cellular and subcellular localization and mechanism of transport of the heteromeric organic solute transporter (OST) OSTalpha-OSTbeta was examined in human and rodent epithelia. The two subunits of the transporter were expressed together in human small intestine, kidney, and liver, tissues tha ... >> More
The cellular and subcellular localization and mechanism of transport of the heteromeric organic solute transporter (OST) OSTalpha-OSTbeta was examined in human and rodent epithelia. The two subunits of the transporter were expressed together in human small intestine, kidney, and liver, tissues that also express the apical sodium-dependent bile acid uptake transporter ASBT (SLC10A2). Indirect immunofluorescence microscopy localized OSTalpha and OSTbeta to the basolateral membrane of mouse, rat, and human ileal enterocytes, renal proximal tubular cells, and cholangiocytes. Transport in OSTalpha-OSTbeta-expressing Xenopus laevis oocytes was unaffected by depletion of intracellular adenosine triphosphate, or by changes in transmembrane Na(+), K(+), H(+), or Cl(-) concentration gradients. However, the oocytes demonstrated robust substrate efflux and trans-stimulation, indicating that transport occurs by facilitated diffusion. Madin Darby canine kidney cells coexpressing mouse Ostalpha and Ostbeta exhibited enhanced apical to basolateral transport of the major glycine and taurine conjugated bile acid species. In conclusion, the selective localization of OSTalpha and OSTbeta to the basolateral plasma membrane of epithelial cells responsible for bile acid and sterol reabsorption, the substrate selectivity of the transporter, and the facilitated diffusion transport mode collectively indicate that OSTalpha-OSTbeta is a key basolateral transporter for the reabsorption of these important steroid-derived molecules. << Less
Hepatology 42:1270-1279(2005) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1.
Abe T., Kakyo M., Tokui T., Nakagomi R., Nishio T., Nakai D., Nomura H., Unno M., Suzuki M., Naitoh T., Matsuno S., Yawo H.
We have isolated a novel liver-specific organic anion transporter, LST-1, that is expressed exclusively in the human, rat, and mouse liver. LST-1 is a new gene family located between the organic anion transporter family and prostaglandin transporter. LST-1 transports taurocholate (Km = 13.6 microM ... >> More
We have isolated a novel liver-specific organic anion transporter, LST-1, that is expressed exclusively in the human, rat, and mouse liver. LST-1 is a new gene family located between the organic anion transporter family and prostaglandin transporter. LST-1 transports taurocholate (Km = 13.6 microM) in a sodium-independent manner. LST-1 also shows broad substrate specificity. It transports conjugated steroids (dehydroepiandrosterone sulfate, estradiol-17beta-glucuronide, and estrone-3-sulfate), eicosanoids (prostaglandin E2, thromboxane B2, leukotriene C4, leukotriene E4), and thyroid hormones (thyroxine, Km = 3.0 microM and triiodothyronine, Km = 2.7 microM), reflecting hepatic multispecificity. LST-1 is probably the most important transporter in human liver for clearance of bile acids and organic anions because hepatic levels of another organic anion transporter, OATP, is very low. This is also the first report of the human molecule that transports thyroid hormones. << Less
J. Biol. Chem. 274:17159-17163(1999) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
OATP1B3-1B7 (LST-3TM12) Is a Drug Transporter That Affects Endoplasmic Reticulum Access and the Metabolism of Ezetimibe.
Malagnino V., Duthaler U., Seibert I., Kraehenbuehl S., Meyer Zu Schwabedissen H.E.
Drug transporters play a crucial role in pharmacokinetics. One subfamily of transporters with proven clinical relevance are the OATP1B transporters. Recently we identified a new member of the OATP1B family named OATP1B3-1B7 (LST-3TM12). This functional transporter is encoded by <i>SLCO1B3</i> and ... >> More
Drug transporters play a crucial role in pharmacokinetics. One subfamily of transporters with proven clinical relevance are the OATP1B transporters. Recently we identified a new member of the OATP1B family named OATP1B3-1B7 (LST-3TM12). This functional transporter is encoded by <i>SLCO1B3</i> and <i>SLCO1B7</i> OATP1B3-1B7 is expressed in hepatocytes and is located in the membrane of the smooth endoplasmic reticulum (SER). One aim of this study was to test whether OATP1B3-1B7 interacts with commercial drugs. First, we screened a selection of OATP1B substrates for inhibition of OATP1B3-1B7-mediated transport of dehydroepiandrosterone sulfate and identified several inhibitors. One such inhibitor was ezetimibe, which not only inhibited OATP1B3-1B7 but is also a substrate, as its cellular content was significantly increased in cells heterologously expressing the transporter. In humans, ezetimibe is extensively metabolized by hepatic and intestinal uridine-5'-diphospho-glucuronosyltransferases (UGTs), the catalytic site of which is located within the SER lumen. After verification of OATP1B3-1B7 expression in the small intestine, we determined in microsomes whether SER access can be modulated by inhibitors of OATP1B3-1B7. We were able to show that these compounds significantly reduced accumulation in small intestinal and hepatic microsomes, which influenced the rate of ezetimibe <i>β</i>-D-glucuronide formation as determined in microsomes treated with bromsulphthalein. Notably, this molecule not only inhibits the herein reported transporter but also other transport systems. In conclusion, we report that multiple drugs interact with OATP1B3-1B7; for ezetimibe, we were able to show that SER access and metabolism is significantly reduced by bromsulphthalein, which is an inhibitor of OATP1B3-1B7. SIGNIFICANCE STATEMENT: OATP1B3-1B3 (LST-3TM12) is a transporter that has yet to be fully characterized. We provide valuable insight into the interaction potential of this transporter with several marketed drugs. Ezetimibe, which interacted with OATP1B3-1B7, is highly metabolized by uridine-5'-diphospho-glucuronosyltransferases (UGTs), whose catalytic site is located within the smooth endoplasmic reticulum (SER) lumen. Through microsomal assays with ezetimibe and the transport inhibitor bromsulphthalein we investigated the interdependence of SER access and the glucuronidation rate of ezetimibe. These findings led us to the hypothesis that access or exit of drugs to the SER is orchestrated by SER transporters such as OATP1B3-1B7. << Less
-
OATP1B3-1B7, a novel organic anion transporting polypeptide, is modulated by FXR ligands and transports bile acids.
Malagnino V., Hussner J., Issa A., Midzic A., Meyer Zu Schwabedissen H.E.
Organic anion transporting polypeptide (OATP) 1B3-1B7 (LST-3TM12) is a member of the OATP1B [solute carrier organic anion transporter (<i>SLCO</i>) <i>1B</i>] family. This transporter is not only functional but also expressed in the membrane of the smooth endoplasmic reticulum of hepatocytes and e ... >> More
Organic anion transporting polypeptide (OATP) 1B3-1B7 (LST-3TM12) is a member of the OATP1B [solute carrier organic anion transporter (<i>SLCO</i>) <i>1B</i>] family. This transporter is not only functional but also expressed in the membrane of the smooth endoplasmic reticulum of hepatocytes and enterocytes. OATP1B3-1B7 is a splice variant of <i>SLCO1B3</i> in which the initial part is encoded by <i>SLCO1B3</i>, whereas the rest of the mRNA originates from the gene locus of <i>SLCO1B7</i>. In this study, we not only showed that <i>SLCO1B3</i> and the mRNA encoding for OATP1B3-1B7 share the 5' untranslated region but also that silencing of an initial <i>SLCO1B3</i> exon lowered the amount of <i>SLCO1B3</i> and of <i>SLCO1B7</i> mRNA in Huh-7 cells. To validate the assumption that both transcripts are regulated by the same promoter we tested the influence of the bile acid sensor farnesoid X receptor (FXR) on their transcription. Treatment of Huh-7 and HepaRG cells with activators of this known regulator of OATP1B3 not only increased <i>SLCO1B3</i> but also OATP1B3-1B7 mRNA transcription. Applying a heterologous expression system, we showed that several bile acids interact with OATP1B3-1B7 and that taurocholic acid and lithocholic acid are OATP1B3-1B7 substrates. As OATP1B3-1B7 is located in the smooth endoplasmic reticulum, it may grant access to metabolizing enzymes. In accordance are our findings showing that the OATP1B3-1B7 inhibitor bromsulphthalein significantly reduced uptake of bile acids into human liver microsomes. Taken together, we report that OATP1B3-1B7 transcription can be modulated with FXR agonists and antagonists and that OATP1B3-1B7 transports bile acids.<b>NEW & NOTEWORTHY</b> Our study on the transcriptional regulation of the novel organic anion transporting polypeptide (OATP) 1B3-1B7 concludes that the promoter of solute carrier organic anion transporter (<i>SLCO</i>) <i>1B3</i> governs <i>SLCO1B3-1B7</i> transcription. Moreover, the transcription of OATP1B3-1B7 can be modulated by farnesoid X receptor (FXR) agonists and antagonists. FXR is a major regulator in bile acid homeostasis that links OATP1B3-1B7 to this physiological function. Findings in transport studies with OATP1B3-1B7 suggest that this transporter interacts with the herein tested bile acids. << Less
Am. J. Physiol. 317:G751-G762(2019) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
LST-3TM12 is a member of the OATP1B family and a functional transporter.
Malagnino V., Hussner J., Seibert I., Stolzenburg A., Sager C.P., Meyer Zu Schwabedissen H.E.
Organic anion transporting polypeptides (OATPs) and particularly the two members of the OATP1B family are known for their role in pharmacokinetics. Both SLCO1B3 and SLCO1B1 are located on chromosome 12 encompassing the gene locus SLCO1B7. Hitherto, this particular gene has been assumed to be a pse ... >> More
Organic anion transporting polypeptides (OATPs) and particularly the two members of the OATP1B family are known for their role in pharmacokinetics. Both SLCO1B3 and SLCO1B1 are located on chromosome 12 encompassing the gene locus SLCO1B7. Hitherto, this particular gene has been assumed to be a pseudogene, even though there are published mRNA sequences linked to this chromosomal area. It was aim of this study to further investigate SLCO1B7 and the associated mRNA LST-3TM12. In a first step, we aligned all mRNAs linked to the chromosomal region of SLCO1B-transporters. This in silico analysis revealed that LST-3TM12 is a product of splicing of SLCO1B3 and SLCO1B7, and encodes for a protein with twelve transmembrane domains. The existence of LST-3TM12 mRNA was verified by polymerase chain reaction showing liver enriched expression. In addition, immunohistological staining showed that LST-3TM12 protein was expressed in the endoplasmic reticulum (ER) of hepatocytes. Localization in the ER was further verified by immunoblot analysis showing high amounts of LST-3TM12 in liver microsomes. Function of LST-3TM12 was assessed by transport studies after heterologous expression in HeLa cells, where the transporter was shown to be expressed not only in the ER but also in the plasma membrane. Overexpression of LST-3TM12 was associated with enhanced cellular accumulation of dehydroepiandrosterone sulfate (V<sub>max</sub> 300.2 pmol mg<sup>-1</sup> min<sup>-1</sup>; K<sub>m</sub> 34.2 µm) and estradiol 17β-glucuronide (V<sub>max</sub> 29.9 mol mg<sup>-1</sup> min<sup>-1</sup> and K<sub>m</sub> 32.8 µM). In conclusion, LST-3TM12 is a functional splice variant of SLCO1B3 and SLCO1B7 expressed in the ER of human liver. << Less
Biochem. Pharmacol. 148:75-87(2018) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Modification of OATP2B1-mediated transport by steroid hormones.
Grube M., Koeck K., Karner S., Reuther S., Ritter C.A., Jedlitschky G., Kroemer H.K.
The family of the organic anion transporting polypeptides forms an increasing group of uptake transport proteins with a wide substrate spectrum. Although the expression of some members of this group, such as organic anion transporting polypeptide (OATP)-A or C, is limited to special tissues (such ... >> More
The family of the organic anion transporting polypeptides forms an increasing group of uptake transport proteins with a wide substrate spectrum. Although the expression of some members of this group, such as organic anion transporting polypeptide (OATP)-A or C, is limited to special tissues (such as liver or brain), the organic anion transporting polypeptide 2B1 (OATPB/SLCO2B1) is expressed in many organs, including liver, placenta, mammary gland, brain, and intestine. However, little is known about its function in those tissues because only a limited number of compounds, such as dehydroepiandrosterone-sulfate (DHEAS) and estrone-3-sulfate (E3S), have been characterized as OATP2B1 substrates. To further elucidate the role of OATP2B1 on steroid transport, we examined the influence of steroid hormones on OATP2B1-mediated E3S and DHEAS uptake using OATP2B1-overexpressing Madin-Darby canine kidney II cells. We identified unconjugated androgens (e.g., testosterone) as potent inhibitors for OATP2B1. In contrast, gestagenes such as progesterone enhanced E3S uptake in a concentration-dependent manner to up to 300% of the control, accompanied by a significant decrease in the OATP2B1 K(m) value for E3S (control, K(m) = 14 microM; in the presence of 31.6 muM progesterone, K(m) = 3.6 microM). Moreover, we demonstrated that testosterone and progesterone are not substrates of OATP2B1, indicating an allosteric mechanism for the observed effects. Furthermore, we showed that progesterone enhances the OATP2B1-dependent pregnenolone sulfate transport. Taken together, the results indicate functional modification of OATP2B1-mediated E3S and DHEAS as well as pregnenolone sulfate transport through steroid hormones such as progesterone. These effects can have physiological consequences for the organ-specific uptake of steroids. << Less
Mol. Pharmacol. 70:1735-1741(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Genetic variants of SLCO1B7 are of relevance for the transport function of OATP1B3-1B7.
Meyer Zu Schwabedissen H.E., Seibert I., Grube M., Alter C.L., Siegmund W., Hussner J.
The family of Organic Anion Transporting Polypeptides are known to facilitate the transmembrane transport. OATP1B3-1B7 is a novel member of the OATP1B-subfamily, and is encoded by SLCO1B3-SLCO1B7 readthrough deriving from the genes SLCO1B3 and SLCO1B7 on chromosome 12. The resulting protein is exp ... >> More
The family of Organic Anion Transporting Polypeptides are known to facilitate the transmembrane transport. OATP1B3-1B7 is a novel member of the OATP1B-subfamily, and is encoded by SLCO1B3-SLCO1B7 readthrough deriving from the genes SLCO1B3 and SLCO1B7 on chromosome 12. The resulting protein is expressed in the smooth endoplasmatic reticulum of hepatocytes, is functional, and transports dehydroepiandrosterone-sulfate (DHEAS). In the gene area encoding for the 1B7-part of the protein, there are coding polymorphisms. It was the aim of this study to test the frequency and the impact of these genetic variants on transport activity. The minor allele frequency (MAF) of the coding polymorphisms was determined in a cohort of 192 individuals. DHEAS transport function was determined by applying the vTF-7 based heterologous expression system using plasmids encoding for OATP1B3-1B7 or the respective variants. The genetic variants 641 T (MAF 0.021), 1073 G (MAF 0.169) and 1775 A (MAF 0.013) significantly reduced DHEAS accumulation in cells transfected with OATP1B3-1B7, albeit without significantly influencing expression of the transporter as determined by Western blot analysis and immunofluorescence after heterologous expression. Genotyping revealed complete linkage of the variants 884A, 1073 G and 1501C. Presence of the haplotype abolished the DHEAS-transport function of OATP1B3-1B7. Naturally and frequently occurring genetic variants located within the gene region of SLCO1B7 encoding for the 1B7-part of OATP1B3-1B7 influence the in vitro function of this member of the OATP1B-family. With their functional characterisation, we provide the basis for pharmacogenetic studies, which may help to understand the in vivo relevance of this transporter. << Less
Pharmacol. Res. 161:105155-105155(2020) [PubMed] [EuropePMC]
-
Dehydroepiandrosterone sulfate (DHEAS): identification of a carrier protein in human liver and brain.
Kullak-Ublick G.A., Fisch T., Oswald M., Hagenbuch B., Meier P.J., Beuers U., Paumgartner G.
Dehydroepiandrosterone sulfate (DHEAS) is the major circulating steroid in man. Pharmacologically, it exerts marked neuropsychiatric effects. Since no target receptor has been identified, we investigated whether the organic anion transporting polypeptide (OATP), a multispecific steroid carrier, tr ... >> More
Dehydroepiandrosterone sulfate (DHEAS) is the major circulating steroid in man. Pharmacologically, it exerts marked neuropsychiatric effects. Since no target receptor has been identified, we investigated whether the organic anion transporting polypeptide (OATP), a multispecific steroid carrier, transports DHEAS. Expression of the human liver OATP in Xenopus laevis oocytes resulted in high-affinity, partially Na+-dependent uptake of [3H]DHEAS (Km: 6.6 micromol/l). DHEAS transport was inhibited by bromosulfophthalein, bile acids, sulfated estrogens and dexamethasone. Northern blot analysis showed widespread expression of OATP in human brain. These data identify OATP as the first known target protein of DHEAS in human liver and brain. << Less
-
A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters.
Hsiang B.H., Zhu Y., Wang Z., Wu Y., Sasseville V., Yang W.-P., Kirchgessner T.G.
A novel human organic transporter, OATP2, has been identified that transports taurocholic acid, the adrenal androgen dehydroepiandrosterone sulfate, and thyroid hormone, as well as the hydroxymethylglutaryl-CoA reductase inhibitor, pravastatin. OATP2 is expressed exclusively in liver in contrast t ... >> More
A novel human organic transporter, OATP2, has been identified that transports taurocholic acid, the adrenal androgen dehydroepiandrosterone sulfate, and thyroid hormone, as well as the hydroxymethylglutaryl-CoA reductase inhibitor, pravastatin. OATP2 is expressed exclusively in liver in contrast to all other known transporter subtypes that are found in both hepatic and nonhepatic tissues. OATP2 is considerably diverged from other family members, sharing only 42% sequence identity with the four other subtypes. Furthermore, unlike other subtypes, OATP2 did not transport digoxin or aldosterone. The rat isoform oatp1 was also shown to transport pravastatin, whereas other members of the OATP family, i.e. rat oatp2, human OATP, and the prostaglandin transporter, did not. Cis-inhibition studies indicate that both OATP2 and roatp1 also transport other statins including lovastatin, simvastatin, and atorvastatin. In summary, OATP2 is a novel organic anion transport protein that has overlapping but not identical substrate specificities with each of the other subtypes and, with its liver-specific expression, represents a functionally distinct OATP isoform. Furthermore, the identification of oatp1 and OATP2 as pravastatin transporters suggests that they are responsible for the hepatic uptake of this liver-specific hydroxymethylglutaryl-CoA reductase inhibitor in rat and man. << Less
J. Biol. Chem. 274:37161-37168(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.