Reaction participants Show >> << Hide
- Name help_outline taurocholate Identifier CHEBI:36257 Charge -1 Formula C26H44NO7S InChIKeyhelp_outline WBWWGRHZICKQGZ-HZAMXZRMSA-M SMILEShelp_outline [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@]([H])(CC[C@@]3([H])[C@]1([H])[C@H](O)C2)[C@H](C)CCC(=O)NCCS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:71875 | RHEA:71876 | RHEA:71877 | RHEA:71878 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype.
Vaz F.M., Paulusma C.C., Huidekoper H., de Ru M., Lim C., Koster J., Ho-Mok K., Bootsma A.H., Groen A.K., Schaap F.G., Oude Elferink R.P., Waterham H.R., Wanders R.J.
<h4>Unlabelled</h4>The enterohepatic circulation of bile salts is an important physiological route to recycle bile salts and ensure intestinal absorption of dietary lipids. The Na(+)-taurocholate cotransporting polypeptide SLC10A1 (NTCP) plays a key role in this process as the major transporter of ... >> More
<h4>Unlabelled</h4>The enterohepatic circulation of bile salts is an important physiological route to recycle bile salts and ensure intestinal absorption of dietary lipids. The Na(+)-taurocholate cotransporting polypeptide SLC10A1 (NTCP) plays a key role in this process as the major transporter of conjugated bile salts from the plasma compartment into the hepatocyte. Here we present the first patient with NTCP deficiency, who was clinically characterized by mild hypotonia, growth retardation, and delayed motor milestones. Total bile salts in plasma were extremely elevated (up to 1,500 μM, ref. <16.3) but there were no clinical signs of cholestatic jaundice, pruritis, or liver dysfunction. Bile salt synthesis and intestinal bile salt signaling were not affected, as evidenced by normal plasma 7α-hydroxy-4-cholesten-3-one (C4) and FGF19 levels. Importantly, the presence of secondary bile salts in the circulation suggested residual enterohepatic cycling of bile salts. Sequencing of the SLC10A1 gene revealed a single homozygous nonsynonymous point mutation in the coding sequence of the gene, resulting in an arginine to histidine substitution at position 252. Functional studies showed that this mutation resulted in a markedly reduced uptake activity of taurocholic acid. Immunofluorescence studies and surface biotinylation experiments demonstrated that the mutant protein is virtually absent from the plasma membrane.<h4>Conclusion</h4>We describe the identification of NTCP deficiency as a new inborn error of metabolism with a relatively mild clinical phenotype. The identification of NTCP deficiency confirms that this transporter is the main import system for conjugated bile salts into the liver but also indicates that auxiliary transporters are able to sustain the enterohepatic cycle in its absence. << Less
-
Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter.
Craddock A.L., Love M.W., Daniel R.W., Kirby L.C., Walters H.C., Wong M.H., Dawson P.A.
The enterohepatic circulation of bile acids is maintained by Na(+)-dependent transport mechanisms. To better understand these processes, a full-length human ileal Na(+)-bile acid cotransporter cDNA was identified using rapid amplification of cDNA ends and genomic cloning techniques. Using Northern ... >> More
The enterohepatic circulation of bile acids is maintained by Na(+)-dependent transport mechanisms. To better understand these processes, a full-length human ileal Na(+)-bile acid cotransporter cDNA was identified using rapid amplification of cDNA ends and genomic cloning techniques. Using Northern blot analysis to determine its tissue expression, we readily detected the ileal Na(+)-bile acid cotransporter mRNA in terminal ileum and kidney. Direct cloning and mapping of the transcriptional start sites confirmed that the kidney cDNA was identical to the ileal Na(+)-bile acid cotransporter. In transiently transfected COS cells, ileal Na(+)-bile acid cotransporter-mediated taurocholate uptake was strictly Na+ dependent and chloride independent. Analysis of the substrate specificity in transfected COS or CHO cells showed that both conjugated and unconjugated bile acids are efficiently transported. When the inhibition constants for other potential substrates such as estrone-3-sulfate were determined, the ileal Na(+)-bile acid cotransporter exhibited a narrower substrate specificity than the related liver Na(+)-bile acid cotransporter. Whereas the multispecific liver Na(+)-bile acid cotransporter may participate in hepatic clearance of organic anion metabolites and xenobiotics, the ileal and renal Na(+)-bile acid cotransporter retains a narrow specificity for reclamation of bile acids. << Less
Am. J. Physiol. 274:G157-G169(1998) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic.
Weinman S.A., Carruth M.W., Dawson P.A.
Intestinal absorption of bile acids depends on a sodium-bile acid cotransport protein in the apical membrane of the ileal epithelial cell. Transport is Na+-dependent, but the Na+-bile acid stoichiometry and electrogenicity of transport are not known. Studies in whole intestine, isolated cells, and ... >> More
Intestinal absorption of bile acids depends on a sodium-bile acid cotransport protein in the apical membrane of the ileal epithelial cell. Transport is Na+-dependent, but the Na+-bile acid stoichiometry and electrogenicity of transport are not known. Studies in whole intestine, isolated cells, and ileal membrane vesicles have been unable to resolve this issue because transport currents are small and can be obscured by other ionic conductances and transport proteins present in these membranes. In this study, the human apical sodium-bile acid transporter was expressed in stably transfected Chinese hamster ovary cells that lack other bile acid transporters. The Na+-dependent transport of a fluorescent bile acid analog, chenodeoxycholyl-Nepsilon-nitrobenzoxadiazol-lysine, was monitored by fluorescence microscopy in single, voltage-clamped cells. Bile acid movement was bidirectional and voltage-dependent with negative intracellular voltage-stimulating influx. A 3-fold reduction in extracellular Na+ produced a negative 52 mV shift of the flux-voltage relationship, consistent with a 2:1 Na+:bile acid coupling stoichiometry. No Na+- or voltage-dependent uptake was observed in nontransfected Chinese hamster ovary cells. These results indicate that the cotransport of bile acids and Na+ by human apical sodium-bile acid transporter is electrogenic and bidirectional and is best explained by a 2:1 Na+:bile acid coupling stoichiometry. These results suggest that membrane potential may regulate bile acid transport rates under physiological and pathophysiological conditions. << Less
-
Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter.
Hagenbuch B., Meier P.J.
We have used a cDNA probe from a cloned rat liver Na+/taurocholate cotransporting polypeptide (Ntcp) to screen a human liver cDNA library. A 1,599-bp cDNA clone that encodes a human Na+/taurocholate cotransporting polypeptide (NTCP) was isolated. The human NTCP consists of 349 amino acids (calcula ... >> More
We have used a cDNA probe from a cloned rat liver Na+/taurocholate cotransporting polypeptide (Ntcp) to screen a human liver cDNA library. A 1,599-bp cDNA clone that encodes a human Na+/taurocholate cotransporting polypeptide (NTCP) was isolated. The human NTCP consists of 349 amino acids (calculated molecular mass of 38 kD) and exhibits 77% amino acid homology with the rat Ntcp. In vitro translation experiments indicate that the protein is glycosylated and has a molecular weight similar to the rat Ntcp. Injection of in vitro transcribed cRNA into Xenopus laevis oocytes resulted in the expression of Na(+)-dependent taurocholate uptake. Saturation kinetics indicated that the human NTCP has a higher affinity for taurocholate (apparent Km = 6 microM) than the previously cloned rat protein (apparent Km = 25 microM). NTCP-mediated taurocholate uptake into oocytes was inhibited by all major bile acid derivatives (100 microM), bumetanide (500 microM), and bromosulphophthalein (100 microM). Southern blot analysis of genomic DNA from a panel of human/hamster somatic cell hybrids mapped the human NTCP gene to chromosome 14. << Less
-
Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition.
Ho R.H., Leake B.F., Roberts R.L., Lee W., Kim R.B.
The key transporter responsible for hepatic uptake of bile acids from portal circulation is Na+-taurocholate cotransporting polypeptide (NTCP, SLC10A1). This transporter is thought to be critical for the maintenance of enterohepatic recirculation of bile acids and hepatocyte function. Therefore, f ... >> More
The key transporter responsible for hepatic uptake of bile acids from portal circulation is Na+-taurocholate cotransporting polypeptide (NTCP, SLC10A1). This transporter is thought to be critical for the maintenance of enterohepatic recirculation of bile acids and hepatocyte function. Therefore, functionally relevant polymorphisms in this transporter would be predicted to have an important impact on bile acid homeostasis/liver function. However, little is known regarding genetic heterogeneity in NTCP. In this study, we demonstrate the presence of multiple single nucleotide polymorphisms in NTCP in populations of European, African, Chinese, and Hispanic Americans. Specifically four nonsynonymous single nucleotide polymorphisms associated with a significant loss of transport function were identified. Cell surface biotinylation experiments indicated that the altered transport activity of T668C (Ile223-->Thr), a variant seen only in African Americans, was due at least in part to decreased plasma membrane expression. Similar expression patterns were observed when the variant alleles were expressed in HepG2 cells, and plasma membrane expression was assessed using immunofluorescence confocal microscopy. Interestingly the C800T (Ser267-->Phe) variant, seen only in Chinese Americans, exhibited a near complete loss of function for bile acid uptake yet fully normal transport function for the non-bile acid substrate estrone sulfate, suggesting this position may be part of a region in the transporter critical and specific for bile acid substrate recognition. Accordingly, our study indicates functionally important polymorphisms in NTCP exist and that the likelihood of being carriers of such polymorphisms is dependent on ethnicity. << Less
J. Biol. Chem. 279:7213-7222(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Substrate specificity of the rat liver Na(+)-bile salt cotransporter in Xenopus laevis oocytes and in CHO cells.
Schroeder A., Eckhardt U., Stieger B., Tynes R., Schteingart C.D., Hofmann A.F., Meier P.J., Hagenbuch B.
It has been proposed that the hepatocellular Na(+)-dependent bile salt uptake system exhibits a broad substrate specificity in intact hepatocytes. In contrast, recent expression studies in mammalian cell lines have suggested that the cloned rat liver Na(+)-taurocholate cotransporting polypeptide ( ... >> More
It has been proposed that the hepatocellular Na(+)-dependent bile salt uptake system exhibits a broad substrate specificity in intact hepatocytes. In contrast, recent expression studies in mammalian cell lines have suggested that the cloned rat liver Na(+)-taurocholate cotransporting polypeptide (Ntcp) may transport only taurocholate. To characterize its substrate specificity Ntcp was stably transfected into Chinese hamster ovary (CHO) cells. These cells exhibited saturable Na(+)-dependent uptake of [3H]taurocholate [Michaelis constant (K(m)) of approximately 34 microM] that was strongly inhibited by all major bile salts, estrone 3-sulfate, bumetanide, and cyclosporin A. Ntcp cRNA-injected Xenopus laevis oocytes and the transfected CHO cells exhibited saturable Na(+)-dependent uptake of [3H]taurochenodeoxycholate (Km of approximately 5 microM), [3H]tauroursodeoxycholate (Km of approximately 14 microM), and [14C]glycocholate (Km of approximately 27 microM). After induction of gene expression by sodium butyrate, Na(+)-dependent transport of [3H]estrone 3-sulfate (Km of approximately 27 microM) could also be detected in the transfected CHO cells. However, there was no detectable Na(+)-dependent uptake of [3H]bumetanide or [3H]cyclosporin A. These results show that the cloned Ntcp can mediate Na(+)-dependent uptake of all physiological bile salts as well as of the steroid conjugate estrone 3-sulfate. Hence, Ntcp is a multispecific transporter with preference for bile salts and other anionic steroidal compounds. << Less
Am. J. Physiol. 274:G370-G375(1998) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Molecular cloning and functional characterization of two alternatively spliced Ntcp isoforms from mouse liver1.
Cattori V., Eckhardt U., Hagenbuch B.
To isolate the murine Na+/taurocholate cotransporting polypeptide (Ntcp), we screened a mouse liver cDNA library and identified Ntcp1, encoding a 362 amino acid protein and Ntcp2, encoding a 317 amino acid protein which had a shorter C-terminal end. Both isoforms mediated saturable Na+-dependent t ... >> More
To isolate the murine Na+/taurocholate cotransporting polypeptide (Ntcp), we screened a mouse liver cDNA library and identified Ntcp1, encoding a 362 amino acid protein and Ntcp2, encoding a 317 amino acid protein which had a shorter C-terminal end. Both isoforms mediated saturable Na+-dependent transport of taurocholate when expressed in Xenopus laevis oocytes. Analysis of the gene revealed that Ntcp2 is produced by alternative splicing where the last intron is retained. << Less
Biochim. Biophys. Acta 1445:154-159(1999) [PubMed] [EuropePMC]
-
Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system.
Hagenbuch B., Stieger B., Foguet M., Luebbert H., Meier P.J.
Liver parenchymal cells continuously extract high amounts of bile acids from portal blood plasma. This uptake process is mediated by a Na+/bile acid cotransport system. A cDNA encoding the rat liver bile acid uptake system has been isolated by expression cloning in Xenopus laevis oocytes. The clon ... >> More
Liver parenchymal cells continuously extract high amounts of bile acids from portal blood plasma. This uptake process is mediated by a Na+/bile acid cotransport system. A cDNA encoding the rat liver bile acid uptake system has been isolated by expression cloning in Xenopus laevis oocytes. The cloned transporter is strictly sodium-dependent and can be inhibited by various non-bile-acid organic compounds. Sequence analysis of the cDNA revealed an open reading frame of 1086 nucleotides coding for a protein of 362 amino acids (calculated molecular mass 39 kDa) with five possible N-linked glycosylation sites and seven putative transmembrane domains. Translation experiments in vitro and in oocytes indicate that the transporter is indeed glycosylated and that its polypeptide backbone has an apparent molecular mass of 33-35 kDa. Northern blot analysis with the cloned probe revealed crossreactivity with mRNA species from rat kidney and intestine as well as from liver tissues of mouse, guinea pig, rabbit, and man. << Less
Proc. Natl. Acad. Sci. U.S.A. 88:10629-10633(1991) [PubMed] [EuropePMC]