Enzymes
| UniProtKB help_outline | 1,459 proteins |
Reaction participants Show >> << Hide
- Name help_outline cholate Identifier CHEBI:29747 Charge -1 Formula C24H39O5 InChIKeyhelp_outline BHQCQFFYRZLCQQ-OELDTZBJSA-M SMILEShelp_outline [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@]([H])(CC[C@@]3([H])[C@]1([H])[C@H](O)C2)[C@H](C)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:71911 | RHEA:71912 | RHEA:71913 | RHEA:71914 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter.
Craddock A.L., Love M.W., Daniel R.W., Kirby L.C., Walters H.C., Wong M.H., Dawson P.A.
The enterohepatic circulation of bile acids is maintained by Na(+)-dependent transport mechanisms. To better understand these processes, a full-length human ileal Na(+)-bile acid cotransporter cDNA was identified using rapid amplification of cDNA ends and genomic cloning techniques. Using Northern ... >> More
The enterohepatic circulation of bile acids is maintained by Na(+)-dependent transport mechanisms. To better understand these processes, a full-length human ileal Na(+)-bile acid cotransporter cDNA was identified using rapid amplification of cDNA ends and genomic cloning techniques. Using Northern blot analysis to determine its tissue expression, we readily detected the ileal Na(+)-bile acid cotransporter mRNA in terminal ileum and kidney. Direct cloning and mapping of the transcriptional start sites confirmed that the kidney cDNA was identical to the ileal Na(+)-bile acid cotransporter. In transiently transfected COS cells, ileal Na(+)-bile acid cotransporter-mediated taurocholate uptake was strictly Na+ dependent and chloride independent. Analysis of the substrate specificity in transfected COS or CHO cells showed that both conjugated and unconjugated bile acids are efficiently transported. When the inhibition constants for other potential substrates such as estrone-3-sulfate were determined, the ileal Na(+)-bile acid cotransporter exhibited a narrower substrate specificity than the related liver Na(+)-bile acid cotransporter. Whereas the multispecific liver Na(+)-bile acid cotransporter may participate in hepatic clearance of organic anion metabolites and xenobiotics, the ileal and renal Na(+)-bile acid cotransporter retains a narrow specificity for reclamation of bile acids. << Less
Am. J. Physiol. 274:G157-G169(1998) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition.
Ho R.H., Leake B.F., Roberts R.L., Lee W., Kim R.B.
The key transporter responsible for hepatic uptake of bile acids from portal circulation is Na+-taurocholate cotransporting polypeptide (NTCP, SLC10A1). This transporter is thought to be critical for the maintenance of enterohepatic recirculation of bile acids and hepatocyte function. Therefore, f ... >> More
The key transporter responsible for hepatic uptake of bile acids from portal circulation is Na+-taurocholate cotransporting polypeptide (NTCP, SLC10A1). This transporter is thought to be critical for the maintenance of enterohepatic recirculation of bile acids and hepatocyte function. Therefore, functionally relevant polymorphisms in this transporter would be predicted to have an important impact on bile acid homeostasis/liver function. However, little is known regarding genetic heterogeneity in NTCP. In this study, we demonstrate the presence of multiple single nucleotide polymorphisms in NTCP in populations of European, African, Chinese, and Hispanic Americans. Specifically four nonsynonymous single nucleotide polymorphisms associated with a significant loss of transport function were identified. Cell surface biotinylation experiments indicated that the altered transport activity of T668C (Ile223-->Thr), a variant seen only in African Americans, was due at least in part to decreased plasma membrane expression. Similar expression patterns were observed when the variant alleles were expressed in HepG2 cells, and plasma membrane expression was assessed using immunofluorescence confocal microscopy. Interestingly the C800T (Ser267-->Phe) variant, seen only in Chinese Americans, exhibited a near complete loss of function for bile acid uptake yet fully normal transport function for the non-bile acid substrate estrone sulfate, suggesting this position may be part of a region in the transporter critical and specific for bile acid substrate recognition. Accordingly, our study indicates functionally important polymorphisms in NTCP exist and that the likelihood of being carriers of such polymorphisms is dependent on ethnicity. << Less
J. Biol. Chem. 279:7213-7222(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.