Enzymes
| UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline sulfate Identifier CHEBI:16189 (CAS: 14808-79-8) help_outline Charge -2 Formula O4S InChIKeyhelp_outline QAOWNCQODCNURD-UHFFFAOYSA-L SMILEShelp_outline [O-]S([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 91 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:71951 | RHEA:71952 | RHEA:71953 | RHEA:71954 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization.
Lee A., Beck L., Markovich D.
Sulfate plays an essential role during growth, development, bone/cartilage formation, and cellular metabolism. In this study, we have determined the structure of the human Na+-sulfate cotransporter (hNaSi-1) cDNA (Human Genome Nomenclature Committee-approved symbol SLC13A1) and gene (NAS1). hNaSi- ... >> More
Sulfate plays an essential role during growth, development, bone/cartilage formation, and cellular metabolism. In this study, we have determined the structure of the human Na+-sulfate cotransporter (hNaSi-1) cDNA (Human Genome Nomenclature Committee-approved symbol SLC13A1) and gene (NAS1). hNaSi-1 encodes a protein of 595 amino acids with 13 putative transmembrane domains. hNaSi-1 mRNA expression was exclusive to the human kidney. Expression of hNaSi-1 protein in Xenopus oocytes demonstrated a high-affinity Na+-sulfate cotransporter that was inhibited by selenate, thiosulfate, molybdate, tungstate, citrate, and succinate. Antisense inhibition experiments suggest hNaSi-1 to represent the major Na+-sulfate cotransporter in the human kidney. NAS1 was localized on human chromosome 7, mapped to 7q31-q32, near the sulfate transporter genes, DRA and SUT-1. The NAS1 gene contains 15 exons, spanning over 83 kb in length. Knowledge of the structure, function, and chromosomal localization of hNaSi-1 will permit the screening of NAS1 mutations in humans with disorders in renal sulfate reabsorption and homeostasis. << Less
-
Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2-) transport protein NaSi-1.
Busch A.E., Waldegger S., Herzer T., Biber J., Markovich D., Murer H., Lang F.
The Na+/sulfate cotransporter cloned from rat kidney cortex (NaSi-1) has been expressed in oocytes of Xenopus laevis and subjected to electrophysiological analysis by current and voltage clamp methods. In current-clamped oocytes, superfusion with 1 mM sulfate resulted in a 12-mV depolarization of ... >> More
The Na+/sulfate cotransporter cloned from rat kidney cortex (NaSi-1) has been expressed in oocytes of Xenopus laevis and subjected to electrophysiological analysis by current and voltage clamp methods. In current-clamped oocytes, superfusion with 1 mM sulfate resulted in a 12-mV depolarization of the cell membrane. Accordingly, in voltage-clamped oocytes sulfate induced an inward current IS, which was dependent on both the concentration of Na+ and sulfate in the superfusate. Half-maximal IS was observed at about 0.1 mM sulfate and 70 mM Na+. The Hill coefficients were 1 and 2.8 for sulfate and Na+, respectively. Thiosulfate and selenate created similar currents as sulfate with a similar Km. At saturating concentrations of thiosulfate and selenate, addition of sulfate could not induce an additive current. Phosphate (1 mM) did not inhibit sulfate-induced currents. Finally, IS was dependent on the holding potential being larger at more negative potentials. The results of this study strongly suggest an electrogenic cotransport of sulfate and Na+ with a stoichiometry of 1:3. << Less
J. Biol. Chem. 269:12407-12409(1994) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Na+-sulfate cotransporter SLC13A1.
Markovich D.
Sulfate is essential for normal physiology. The kidney plays a major role in sulfate homeostasis. Sulfate is freely filtered and strongly reabsorbed in the proximal tubule. The apical membrane Na(+)-sulfate cotransporter NaS1 (SLC13A1) mediates sulfate (re)absorption across renal proximal tubule a ... >> More
Sulfate is essential for normal physiology. The kidney plays a major role in sulfate homeostasis. Sulfate is freely filtered and strongly reabsorbed in the proximal tubule. The apical membrane Na(+)-sulfate cotransporter NaS1 (SLC13A1) mediates sulfate (re)absorption across renal proximal tubule and small intestinal epithelia. NaS1 encodes a 595-amino acid (≈ 66 kDa) protein with 13 putative transmembrane domains. Its substrate preferences are sodium and sulfate, thiosulfate, and selenate, and its activity is inhibited by molybdate, selenate, tungstate, thiosulfate, succinate, and citrate. NaS1 is primarily expressed in the kidney (proximal tubule) and intestine (duodenum to colon). NaS1 expression is down-regulated in the renal cortex by high sulfate diet, hypothyroidism, vitamin D depletion, glucocorticoids, hypokalemia, metabolic acidosis, and NSAIDs and up-regulated by low sulfate diet, thyroid hormone, vitamin D supplementation, growth hormone, chronic renal failure, and during post-natal growth. Disruption of murine NaS1 gene leads to hyposulfatemia and hypersulfaturia, as well as changes in metabolism, growth, fecundity, behavior, gut physiology, and liver detoxification. This suggests that NaS1 is an important sulfate transporter and its disruption leads to perturbed sulfate homeostasis, which contributes to numerous pathophysiological conditions. << Less