Reaction participants Show >> << Hide
- Name help_outline selenate Identifier CHEBI:15075 (CAS: 14124-68-6) help_outline Charge -2 Formula O4Se InChIKeyhelp_outline QYHFIVBSNOWOCQ-UHFFFAOYSA-L SMILEShelp_outline [O-][Se]([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:72079 | RHEA:72080 | RHEA:72081 | RHEA:72082 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2-) transport protein NaSi-1.
Busch A.E., Waldegger S., Herzer T., Biber J., Markovich D., Murer H., Lang F.
The Na+/sulfate cotransporter cloned from rat kidney cortex (NaSi-1) has been expressed in oocytes of Xenopus laevis and subjected to electrophysiological analysis by current and voltage clamp methods. In current-clamped oocytes, superfusion with 1 mM sulfate resulted in a 12-mV depolarization of ... >> More
The Na+/sulfate cotransporter cloned from rat kidney cortex (NaSi-1) has been expressed in oocytes of Xenopus laevis and subjected to electrophysiological analysis by current and voltage clamp methods. In current-clamped oocytes, superfusion with 1 mM sulfate resulted in a 12-mV depolarization of the cell membrane. Accordingly, in voltage-clamped oocytes sulfate induced an inward current IS, which was dependent on both the concentration of Na+ and sulfate in the superfusate. Half-maximal IS was observed at about 0.1 mM sulfate and 70 mM Na+. The Hill coefficients were 1 and 2.8 for sulfate and Na+, respectively. Thiosulfate and selenate created similar currents as sulfate with a similar Km. At saturating concentrations of thiosulfate and selenate, addition of sulfate could not induce an additive current. Phosphate (1 mM) did not inhibit sulfate-induced currents. Finally, IS was dependent on the holding potential being larger at more negative potentials. The results of this study strongly suggest an electrogenic cotransport of sulfate and Na+ with a stoichiometry of 1:3. << Less
J. Biol. Chem. 269:12407-12409(1994) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.