Reaction participants Show >> << Hide
- Name help_outline (S)-carnitine Identifier CHEBI:11060 (Beilstein: 4292316; CAS: 541-14-0) help_outline Charge 0 Formula C7H15NO3 InChIKeyhelp_outline PHIQHXFUZVPYII-LURJTMIESA-N SMILEShelp_outline C[N+](C)(C)C[C@@H](O)CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:72095 | RHEA:72096 | RHEA:72097 | RHEA:72098 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance.
Ohashi R., Tamai I., Yabuuchi H., Nezu J.I., Oku A., Sai Y., Shimane M., Tsuji A.
Carnitine deficiency, either primary or drug-induced, causes critical symptoms and is thought to involve alteration of active transport of carnitine across the plasma membrane of tissues as the underlying mechanism. Recently, we showed that human organic cation transporter, hOCTN2, cloned as a mem ... >> More
Carnitine deficiency, either primary or drug-induced, causes critical symptoms and is thought to involve alteration of active transport of carnitine across the plasma membrane of tissues as the underlying mechanism. Recently, we showed that human organic cation transporter, hOCTN2, cloned as a member of the organic cation transporter family, is a physiologically important Na(+)-dependent high-affinity carnitine transporter in humans. In this study, we further characterized the functional properties of hOCTN2 and examined the interaction between hOCTN2-mediated carnitine transport and clinically used drugs to assess possible toxicological effects. When expressed in human embryonic kidney (HEK)293 cells, hOCTN2 showed low but significant stereospecific transport activity: D-carnitine was transported with lower affinity (K(m) = 10.9 microM) than the L-isomer (K(m) = 4.3 microM). One Na(+) appeared to be associated with the transport of one carnitine molecule. hOCTN2-mediated transport of acetyl-L-carnitine was also Na(+)-dependent and of high affinity, with a K(m) value of 8.5 microM. To examine the transport activity for organic cations other than carnitine and the possible relationship of drug-induced carnitine deficiency with hOCTN2, the inhibitory effect of several drugs on hOCTN2-mediated L-carnitine transport was examined. Many zwitterionic drugs, such as cephaloridine, and many cationic drugs, such as quinidine and verapamil, exhibited significant inhibitory effects. Among these inhibitors, tetraethylammonium, pyrilamine, quinidine, verapamil, and valproate were found to be transported by hOCTN2. The results suggest that the carnitine deficiency-related toxicological effects by long-term treatment with such drugs might be ascribed to a functional alteration of hOCTN2-mediated carnitine transport. << Less
J. Pharmacol. Exp. Ther. 291:778-784(1999) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Functional and pharmacological characterization of human Na(+)-carnitine cotransporter hOCTN2.
Wagner C.A., Luekewille U., Kaltenbach S., Moschen I., Broeer A., Risler T., Broeer S., Lang F.
L-Carnitine is essential for the translocation of acyl-carnitine into the mitochondria for beta-oxidation of long-chain fatty acids. It is taken up into the cells by the recently cloned Na(+)-driven carnitine organic cation transporter OCTN2. Here we expressed hOCTN2 in Xenopus laevis oocytes and ... >> More
L-Carnitine is essential for the translocation of acyl-carnitine into the mitochondria for beta-oxidation of long-chain fatty acids. It is taken up into the cells by the recently cloned Na(+)-driven carnitine organic cation transporter OCTN2. Here we expressed hOCTN2 in Xenopus laevis oocytes and investigated with two-electrode voltage-clamp and flux measurements its functional and pharmacological properties as a Na(+)-carnitine cotransporter. L-carnitine transport was electrogenic. The L-carnitine-induced currents were voltage and Na(+) dependent, with half-maximal currents at 0.3 +/-0.1 mM Na(+) at -60 mV. Furthermore, L-carnitine-induced currents were pH dependent, decreasing with acidification. In contrast to other members of the organic cation transporter family, hOCTN2 functions as a Na(+)-coupled carnitine transporter. Carnitine transport was stereoselective, with an apparent Michaelis-Menten constant (K(m)) of 4.8 +/-0.3 microM for L-carnitine and 98.3 +/-38.0 microM for D-carnitine. The substrate specificity of hOCTN2 differs from rOCT-1 and hOCT-2 as hOCTN2 showed only small currents with classic OCT substrates such as choline or tetraethylammonium; by contrast hOCTN2 mediated transport of betaine. hOCTN2 was inhibited by several drugs known to induce secondary carnitine deficiency. Most potent blockers were the antibiotic emetine and the ion channel blockers quinidine and verapamil. The apparent IC(50) for emetine was 4.2 +/-1.2 microM. The anticonvulsant valproic acid did not induce a significant inhibition of carnitine transport, pointing to a different mode of action. In summary, hOCTN2 mediates electrogenic Na(+)-dependent stereoselective high-affinity transport of L-carnitine and Na(+). hOCTN2 displays transport properties distinct from other members of the OCT family and is directly inhibited by several substances known to induce systemic carnitine deficiency. << Less
Am. J. Physiol. 279:F584-F591(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.