Reaction participants Show >> << Hide
- Name help_outline putrescine Identifier CHEBI:326268 Charge 2 Formula C4H14N2 InChIKeyhelp_outline KIDHWZJUCRJVML-UHFFFAOYSA-P SMILEShelp_outline [NH3+]CCCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 28 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:72135 | RHEA:72136 | RHEA:72137 | RHEA:72138 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
OCT2 and MATE1 provide bidirectional agmatine transport.
Winter T.N., Elmquist W.F., Fairbanks C.A.
Agmatine is a biogenic amine (l-arginine metabolite) of potential relevance to several central nervous system (CNS) conditions. The identities of transporters underlying agmatine and polyamine disposition in mammalian systems are not well-defined. The SLC-family organic cation transporters (OCT) O ... >> More
Agmatine is a biogenic amine (l-arginine metabolite) of potential relevance to several central nervous system (CNS) conditions. The identities of transporters underlying agmatine and polyamine disposition in mammalian systems are not well-defined. The SLC-family organic cation transporters (OCT) OCT1 and OCT2 and multidrug and toxin extrusion transporter-1 (MATE1) are transport systems that may be of importance for the cellular disposition of agmatine and putrescine. We investigated the transport of [(3)H]agmatine and [(3)H]putrescine in human embryonic kidney (HEK293) cells stably transfected with hOCT1, hOCT2, and hMATE1. Agmatine transport by hOCT1 and hOCT2 was concentration-dependent, whereas only hOCT2 demonstrated pH-dependent transport. hOCT2 exhibited a greater affinity for agmatine (K(m) = 1.84 ± 0.38 mM) than did hOCT1 (K(m) = 18.73 ± 4.86 mM). Putrescine accumulation was pH- and concentration-dependent in hOCT2-HEK cells (K(m) = 11.29 ± 4.26 mM) but not hOCT1-HEK cells. Agmatine accumulation, in contrast to putrescine, was significantly enhanced by hMATE1 overexpression, and was saturable (K(m) = 240 ± 31 μM; V(max) = 192 ± 10 pmol/min/mg of protein). Intracellular agmatine was also trans-stimulated (effluxed) from hMATE1-HEK cells in the presence of an inward proton-gradient. The hMATE1-mediated transport of agmatine was inhibited by polyamines, the prototypical substrates MPP+ and paraquat, as well as guanidine and arcaine, but not l-arginine. These results suggest that agmatine disposition may be influenced by hOCT2 and hMATE1, two transporters critical in the renal elimination of xenobiotic compounds. << Less
Mol. Pharm. 8:133-142(2011) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.