Enzymes
| UniProtKB help_outline | 3 proteins |
Reaction participants Show >> << Hide
- Name help_outline taurocholate Identifier CHEBI:36257 Charge -1 Formula C26H44NO7S InChIKeyhelp_outline WBWWGRHZICKQGZ-HZAMXZRMSA-M SMILEShelp_outline [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@]([H])(CC[C@@]3([H])[C@]1([H])[C@H](O)C2)[C@H](C)CCC(=O)NCCS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 249 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:72307 | RHEA:72308 | RHEA:72309 | RHEA:72310 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Estrone sulphate uptake by the microvillous membrane of placental syncytiotrophoblast is coupled to glutamate efflux.
Lofthouse E.M., Cleal J.K., O'Kelly I.M., Sengers B.G., Lewis R.M.
Organic anion transporters (OATs) and organic anion transporting polypeptides (OATPs) are transport proteins that mediate exchange of metabolites, hormones and waste products. Directional transport by these transporters can occur when exchange is coupled to the gradients of other substrates. This ... >> More
Organic anion transporters (OATs) and organic anion transporting polypeptides (OATPs) are transport proteins that mediate exchange of metabolites, hormones and waste products. Directional transport by these transporters can occur when exchange is coupled to the gradients of other substrates. This study investigates whether the activity of OATP4A1 and OATP2A1 on the maternal facing microvillus membrane of the placental syncytiotrophoblast is coupled to the glutamate gradient. OAT and OATP transporter proteins were over expressed in Xenopus oocytes to study their transport characteristics. Further transport studies were performed in term human placental villous fragments. Xenopus oocytes expressing OATP4A1 mediated glutamate uptake. No glutamate transport was observed in oocytes expressing OAT1, OAT3, OAT7 or OATP2A1. In oocytes expressing OATP4A1, uptake of estrone sulphate, thyroid hormones T3 and T4 and the bile acid taurocholate stimulated glutamate efflux. In term placental villous fragments addition of estrone sulphate and taurocholate trans-stimulated glutamate efflux. Coupling of OATP4A1 to the glutamate gradient may drive placental uptake of estrone-sulphate and thyroid hormone while also facilitating uptake of potentially harmful bile acids. In contrast, if OATP2A1 is not coupled to a similar gradient, it may function more effectively as an efflux transporter, potentially mediating efflux of prostaglandins to the mother. This study provides further evidence for glutamate as an important counter-ion driving transport into the placenta. << Less
Biochem. Biophys. Res. Commun. 506:237-242(2018) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner.
Fujiwara K., Adachi H., Nishio T., Unno M., Tokui T., Okabe M., Onogawa T., Suzuki T., Asano N., Tanemoto M., Seki M., Shiiba K., Suzuki M., Kondo Y., Nunoki K., Shimosegawa T., Iinuma K., Ito S., Matsuno S., Abe T.
We have recently identified that rat organic anion transporters, polypeptide2 (oatp2) and oatp3, both of which transport thyroid hormones. However, in humans the molecular organization of the organic anion transporters has diverged, and the responsible molecule for thyroid hormone transport has no ... >> More
We have recently identified that rat organic anion transporters, polypeptide2 (oatp2) and oatp3, both of which transport thyroid hormones. However, in humans the molecular organization of the organic anion transporters has diverged, and the responsible molecule for thyroid hormone transport has not been clarified, except for human liver-specific transporter (LST-1) identified by us. In this study we isolated and characterized a novel human organic anion transporter, OATP-E from human brain. The isolated complementary DNA encodes a polypeptide of 722 amino acids with 12 transmembrane domains. A rat counterpart, oatp-E, was also identified. Homology analysis and the phylogenetic tree analysis revealed that OATP-E/oatp-E is a subfamily of the organic anion transporter. Human OATP-E transported 3,3',5-triiodo-L-thyronine (K(m), 0.9 microM), thyronine, and rT(3) in a Na(+)-independent manner. Although the clone was isolated from the brain, OATP-E messenger RNA was abundantly expressed in various peripheral tissues. The rat counterpart, oatp-E, also transported 3,3',5-triiodo-L-thyronine. In addition, in this study we revealed that human OATP, which is exclusively expressed in the brain, transported 3,3',5-triiodo-L-thyronine (K(m), 6.5 microM), T(4) (K(m), 8.0 microM), and rT(3). These data suggest that in humans, several different molecules are involved in transporting thyroid hormone: OATP in the brain, LST-1 in the liver, and OATP-E in peripheral tissues. << Less
Endocrinology 142:2005-2012(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.