Reaction participants Show >> << Hide
- Name help_outline prostaglandin E2 Identifier CHEBI:606564 (Beilstein: 8364130) help_outline Charge -1 Formula C20H31O5 InChIKeyhelp_outline XEYBRNLFEZDVAW-ARSRFYASSA-M SMILEShelp_outline CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 15 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glutarate Identifier CHEBI:30921 Charge -2 Formula C5H6O4 InChIKeyhelp_outline JFCQEDHGNNZCLN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:72495 | RHEA:72496 | RHEA:72497 | RHEA:72498 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): further substrate specificity of mOat3.
Kobayashi Y., Ohshiro N., Tsuchiya A., Kohyama N., Ohbayashi M., Yamamoto T.
Organic anion transporter 3 [Oat3(Slc22a8)] plays an important role in the renal handling of organic compounds. The substrate specificity of rat Oat3 and human Oat3 has been elucidated; information on mouse Oat3 (mOat3) is less defined. The aim of this study was to extend the substrate selectivity ... >> More
Organic anion transporter 3 [Oat3(Slc22a8)] plays an important role in the renal handling of organic compounds. The substrate specificity of rat Oat3 and human Oat3 has been elucidated; information on mouse Oat3 (mOat3) is less defined. The aim of this study was to extend the substrate selectivity of mOat3. When expressed in Xenopus laevis oocytes, mOat3 mediated the uptake of p-aminohippuric acid and estron sulfate (ES). In addition to these substrates, we found that several organic compounds such as prostaglandin E(2), prostaglandin F(2alpha), allopurinol, 6-mercaptopurine (6-MP), 5-fluorouracil (5-FU), and l-carnitine are substrates of mOat3, compounds identified for the first time. The apparent K(m) values for the uptake of mOat3 that mediated the transport of 6-MP, 5-FU, and l-carnitine were 4.01 +/- 0.7 microM, 53.9 +/-8.9 nM, and 61.9 +/-1.1 nM, respectively. Northern blot analysis revealed that gene coding for mOat3 is predominant in the kidney and, to a lesser extent, in the brain and the eye. Our findings thus provide further insights into the role of Oat3 in renal drug transport. << Less
Drug Metab. Dispos. 32:479-483(2004) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Role of mouse organic anion transporter 3 (mOat3) as a basolateral prostaglandin E2 transport pathway.
Nilwarangkoon S., Anzai N., Shiraya K., Yu E., Islam R., Cha S.H., Onozato M.L., Miura D., Jutabha P., Tojo A., Kanai Y., Endou H.
Renal organic anion transporters play an important role in the handling of a number of endogenous and exogenous anionic substances in the kidney. In this study, we investigated prostaglandin E(2) (PGE(2)) transport properties and intrarenal localization of mouse organic anion transporter 3 (mOat3) ... >> More
Renal organic anion transporters play an important role in the handling of a number of endogenous and exogenous anionic substances in the kidney. In this study, we investigated prostaglandin E(2) (PGE(2)) transport properties and intrarenal localization of mouse organic anion transporter 3 (mOat3). When expressed in Xenopus oocytes, mOat3 mediated the time- and concentration-dependent transport of PGE(2) (K(m): 1.48 microM). PGE(2) transport mediated by mOat3 was trans-stimulated by intracellular glutarate injected into the oocytes. PGE(2) efflux via mOat3 was also trans-stimulated by extracellular glutarate. Thus, mOat3 was shown to mediate the bidirectional transport of PGE(2), partly coupled to the dicarboxylate exchange mechanism. Immunohistochemical study revealed that mOat3 protein was localized at the basolateral membrane of renal proximal and distal tubules. Furthermore, diffuse expression of mOat3, including expression in the basolateral membrane in macula densa (MD) cells, was observed. These results indicate that mOat3 plays an important role as a basolateral transport pathway of PGE(2) in the distal nephron including MD cells that may constitute one of the indispensable steps for renin release and regulation of the tubuloglomerular feedback mechanism. << Less
J. Pharmacol. Sci. 103:48-55(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.