Enzymes
| UniProtKB help_outline | 863 proteins |
Reaction participants Show >> << Hide
- Name help_outline menadiol Identifier CHEBI:6746 (Beilstein: 1638194; CAS: 481-85-6) help_outline Charge 0 Formula C11H10O2 InChIKeyhelp_outline ZJTLZYDQJHKRMQ-UHFFFAOYSA-N SMILEShelp_outline Cc1cc(O)c2ccccc2c1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E,6E,10E)-geranylgeranyl diphosphate Identifier CHEBI:58756 (Beilstein: 3574726) help_outline Charge -3 Formula C20H33O7P2 InChIKeyhelp_outline OINNEUNVOZHBOX-QIRCYJPOSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 63 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline menaquinol-4 Identifier CHEBI:193091 Charge 0 Formula C31H42O2 InChIKeyhelp_outline NIOZAZRLJCBEGX-GHDNBGIDSA-N SMILEShelp_outline C1(O)=C(C)C(=C(O)C2=CC=CC=C12)C/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CCC=C(C)C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,188 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:74083 | RHEA:74084 | RHEA:74085 | RHEA:74086 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| MetaCyc help_outline |
Publications
-
Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme.
Nakagawa K., Hirota Y., Sawada N., Yuge N., Watanabe M., Uchino Y., Okuda N., Shimomura Y., Suhara Y., Okano T.
Vitamin K occurs in the natural world in several forms, including a plant form, phylloquinone (PK), and a bacterial form, menaquinones (MKs). In many species, including humans, PK is a minor constituent of hepatic vitamin K content, with most hepatic vitamin K content comprising long-chain MKs. Me ... >> More
Vitamin K occurs in the natural world in several forms, including a plant form, phylloquinone (PK), and a bacterial form, menaquinones (MKs). In many species, including humans, PK is a minor constituent of hepatic vitamin K content, with most hepatic vitamin K content comprising long-chain MKs. Menaquinone-4 (MK-4) is ubiquitously present in extrahepatic tissues, with particularly high concentrations in the brain, kidney and pancreas of humans and rats. It has consistently been shown that PK is endogenously converted to MK-4 (refs 4-8). This occurs either directly within certain tissues or by interconversion to menadione (K(3)), followed by prenylation to MK-4 (refs 9-12). No previous study has sought to identify the human enzyme responsible for MK-4 biosynthesis. Previously we provided evidence for the conversion of PK and K(3) into MK-4 in mouse cerebra. However, the molecular mechanisms for these conversion reactions are unclear. Here we identify a human MK-4 biosynthetic enzyme. We screened the human genome database for prenylation enzymes and found UbiA prenyltransferase containing 1 (UBIAD1), a human homologue of Escherichia coli prenyltransferase menA. We found that short interfering RNA against the UBIAD1 gene inhibited the conversion of deuterium-labelled vitamin K derivatives into deuterium-labelled-MK-4 (MK-4-d(7)) in human cells. We confirmed that the UBIAD1 gene encodes an MK-4 biosynthetic enzyme through its expression and conversion of deuterium-labelled vitamin K derivatives into MK-4-d(7) in insect cells infected with UBIAD1 baculovirus. Converted MK-4-d(7) was chemically identified by (2)H-NMR analysis. MK-4 biosynthesis by UBIAD1 was not affected by the vitamin K antagonist warfarin. UBIAD1 was localized in endoplasmic reticulum and ubiquitously expressed in several tissues of mice. Our results show that UBIAD1 is a human MK-4 biosynthetic enzyme; this identification will permit more effective decisions to be made about vitamin K intake and bone health. << Less