Enzymes
| UniProtKB help_outline | 644 proteins |
Reaction participants Show >> << Hide
- Name help_outline D-serine Identifier CHEBI:35247 Charge 0 Formula C3H7NO3 InChIKeyhelp_outline MTCFGRXMJLQNBG-UWTATZPHSA-N SMILEShelp_outline [NH3+][C@H](CO)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 18 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamine Identifier CHEBI:58359 Charge 0 Formula C5H10N2O3 InChIKeyhelp_outline ZDXPYRJPNDTMRX-VKHMYHEASA-N SMILEShelp_outline NC(=O)CC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 77 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 259 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:75307 | RHEA:75308 | RHEA:75309 | RHEA:75310 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Functional and molecular analysis of D-serine transport in retinal Mueller cells.
Dun Y., Mysona B., Itagaki S., Martin-Studdard A., Ganapathy V., Smith S.B.
D-serine, an endogenous co-agonist of NMDA receptors in vertebrate retina, may modulate glutamate sensitivity of retinal neurons. This study determined at the functional and molecular level the transport process responsible for D-serine in retinal Müller cells. RT-PCR and immunoblotting showed tha ... >> More
D-serine, an endogenous co-agonist of NMDA receptors in vertebrate retina, may modulate glutamate sensitivity of retinal neurons. This study determined at the functional and molecular level the transport process responsible for D-serine in retinal Müller cells. RT-PCR and immunoblotting showed that serine racemase (SR), the synthesizing enzyme for D-serine, is expressed in the rMC-1 Müller cell line and primary cultures of mouse Müller cells (1 degrees MCs). The relative contributions of different amino acid transport systems to d-serine uptake were determined based on differential substrate specificities and ion dependencies. D-serine uptake was obligatorily dependent on Na+, eliminating Na+-independent transporters (asc-1 and system L) for D-serine in Müller cells. The Na+:substrate stoichiometry for the transport process was 1:1. D-serine transport was inhibited by alanine, serine, cysteine, glutamine, and asparagine, but not anionic amino acids or cationic amino acids, suggesting that D-serine transport in Müller cells occurs via ASCT2 rather than ASCT1 or ATB0,+. The expression of mRNAs specific for ASCT1, ASCT2, and ATB0,+ was analyzed by RT-PCR confirming the expression of ASCT2 (and ASCT1) mRNA, but not ATB0,+, in Müller cells. Immunoblotting detected ASCT2 in neural retina and in 1 degrees MCs; immunohistochemistry confirmed these data in retinal sections and in cultures of 1 degrees MCs. The efflux of D-serine via ASCT2 by ASCT2 substrates was demonstrable using the Xenopus laevis oocyte heterologous expression system. These data provide the first molecular evidence for SR and ASCT2 expression in a Müller cell line and in 1 degrees MCs and suggest that D-serine, synthesized in Müller cells by SR, is effluxed via ASCT2 to regulate NMDA receptors in adjacent neurons. << Less
Exp. Eye Res. 84:191-199(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.