Enzymes
UniProtKB help_outline | 3,921 proteins |
Reaction participants Show >> << Hide
- Name help_outline bromide Identifier CHEBI:15858 (Beilstein: 3587179; CAS: 24959-67-9) help_outline Charge -1 Formula Br InChIKeyhelp_outline CPELXLSAUQHCOX-UHFFFAOYSA-M SMILEShelp_outline [Br-] 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:75383 | RHEA:75384 | RHEA:75385 | RHEA:75386 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Publications
-
SLC26A7 is a Cl- channel regulated by intracellular pH.
Kim K.H., Shcheynikov N., Wang Y., Muallem S.
Members of the SLC26 transporter family play an essential role in several epithelial functions, as revealed by diseases associated with mutations in members of the family. Several members were shown to function as Cl(-) and HCO(3)(-) transporters that likely play an important role in epithelial Cl ... >> More
Members of the SLC26 transporter family play an essential role in several epithelial functions, as revealed by diseases associated with mutations in members of the family. Several members were shown to function as Cl(-) and HCO(3)(-) transporters that likely play an important role in epithelial Cl(-) absorption and HCO(3)(-) secretion. However, the mechanism of most transporters is not well understood. SLC26A7 is a member of the SLC26 transporter family reported to be expressed in the basolateral membrane of the cortical collecting duct and parietal cells and functions as a coupled Cl(-)/HCO(3)(-) exchanger. In the present work we examined the transport properties of SLC26A7 to determine its transport characteristics and electrogenicity. We found that when expressed in Xenopus oocytes or HEK293 cells SLC26A7 functions as a pH(i)-regulated Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability. Expression of SLC26A7 in oocytes or HEK293 cells generated a Cl(-) current with linear I/V and an instantaneous current that was voltage- and time-independent. Based on measurement of reversal potential the selectivity of SLC26A7 is NO(3)(-)>>Cl(-)=Br(-)=I(-)>SO(4)(2-)=Glu(-), although I(-) partially inhibited the current. Incubating the cells with HCO(3)(-) or butyrate acidified the cytosol and increased the selectivity of SLC26A7 for Cl(-). Measurement of membrane potential and pH(i) showed minimal OH(-) and HCO(3)(-) transport by SLC26A7 when the cells were incubated in Cl(-)-containing or Cl(-)-free media. The activity of SLC26A7 was inhibited by all inhibitors of anion transporters tested, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, diphenylamine-2-carboxylic acid, and glybenclamide. These findings reveal that SLC26A7 functions as a unique Cl(-) channel that is regulated by intracellular H(+). << Less
J. Biol. Chem. 280:6463-6470(2005) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils.
Simchowitz L.
Isolated human neutrophils possess three distinct pathways by which Cl-crosses the plasma membrane of steady state cells: anion exchange, active transport, and electrodiffusion. The purpose of the present work was to investigate the selectivity of each of these separate processes with respect to o ... >> More
Isolated human neutrophils possess three distinct pathways by which Cl-crosses the plasma membrane of steady state cells: anion exchange, active transport, and electrodiffusion. The purpose of the present work was to investigate the selectivity of each of these separate processes with respect to other external halide ions. (a) The bulk of total anion movements represents transport through an electrically silent anion-exchange mechanism that is insensitive to disulfonic stilbenes, but which can be competitively inhibited by alpha-cyano-4-hydroxycinnamate (CHC; Ki approximately 0.3 mM). The affinity of the external translocation site of the carrier for each of the different anions was determined (i) from substrate competition between Cl- and either Br-, F-, or I-, (ii) from trans stimulation of 36Cl-efflux as a function of the external concentrations of these anions, (iii) from changes in the apparent Ki for CHC depending on the nature of the replacement anion in the bathing medium, and (iv) from activation of 82Br- and 125I-influxes by their respective ions. Each was bound and transported at roughly similar rates (Vmax values all 1.0-1.4 meq/liter cell water.min); the order of decreasing affinities is Cl- greater than Br- greater than F- greater than I-(true Km values of 5, 9, 23, and 44 mM, respectively). These anions undergo 1:1 countertransport for internal Cl-. (b) There is a minor component of total Cl-influx that constitutes an active inward transport system for the intracellular accumulation of Cl-[( Cl-]i approximately 80 meq/liter cell water), fourfold higher than expected for passive distribution. This uptake is sensitive to intracellular ATP depletion by 2-deoxy-D-glucose and can be inhibited by furosemide, ethacrynic acid, and CHC, which also blocks anion exchange. This active Cl-uptake process binds and transports other members of the halide series in the sequence Cl- greater than Br- greater than I- greater than F-(Km values of 5, 8, 15, and 41 mM, respectively). (c) Electrodiffusive fluxes are small. CHC-resistant 82Br- and 125I-influxes behave as passive leak fluxes through low-conductance ion channels: they are nonsaturable and strongly voltage dependent. These anions permeate the putative Cl- channel in the sequence I- greater than Br- greater than Cl-with relative permeability ratios of 2.2:1.4:1, respectively, where PCl approximately 5 X 10(-9) cm/s. << Less
J Gen Physiol 91:835-860(1988) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Anionic leak currents through the Na+/monocarboxylate cotransporter SMCT1.
Coady M.J., Wallendorff B., Bourgeois F., Lapointe J.Y.
SMCT1 is a Na-coupled cotransporter of short chain monocarboxylates, which is expressed in the apical membrane of diverse epithelia such as colon, renal cortex, and thyroid. We previously reported that SMCT1 cotransport was reduced by extracellular Cl(-) replacement with cyclamate(-) and that the ... >> More
SMCT1 is a Na-coupled cotransporter of short chain monocarboxylates, which is expressed in the apical membrane of diverse epithelia such as colon, renal cortex, and thyroid. We previously reported that SMCT1 cotransport was reduced by extracellular Cl(-) replacement with cyclamate(-) and that the protein exhibited an ostensible anionic leak current. In this paper, we have revisited the interaction between small monovalent anions and SMCT cotransport and leak currents. We found that the apparent Cl(-) dependence of cotransport was due to inhibition of this protein by the replacement anion cyclamate, whereas several other replacement anions function as substrates for SMCT1; a suitable replacement anion (MES(-)) was identified. The observed outward leak currents represented anionic influx and favored larger anions (NO(3)(-)>I(-)>Br(-)>Cl(-)); currents in excess of 1 muA (at +50 mV) could be observed and exhibited a quasilinear relationship with anion concentrations up to 100 mM. Application of 25 mM bicarbonate did not produce measurable leak currents. The leak current displayed outward rectification, which disappeared when external Na(+) was replaced by N-methyl-d-glucamine(+). More precisely, external Na(+) blocked the leak current in both directions, but its K(i) value rose rapidly when membrane potential became positive. Thus SMCT1 possesses a anionic leak current that becomes significant whenever external Na(+) concentration is reduced. The presence of this leak current may represent a second function for SMCT1 in addition to cotransporting short chain fatty acids, and future experiments will determine whether this function serves a physiological role in tissues where SMCT1 is expressed. << Less
Am. J. Physiol. 298:C124-C131(2010) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.