Enzymes
| UniProtKB help_outline | 792 proteins |
Reaction participants Show >> << Hide
- Name help_outline glycylglycylglycine Identifier CHEBI:195214 Charge 0 Formula C6H11N3O4 InChIKeyhelp_outline XKUKSGPZAADMRA-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CC(=O)NCC(=O)NCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:76391 | RHEA:76392 | RHEA:76393 | RHEA:76394 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Functional characterization of human peptide/histidine transporter 1 in stably transfected MDCK Cells.
Song F., Hu Y., Wang Y., Smith D.E., Jiang H.
The proton-coupled oligopeptide transporter PHT1 (SLC15A4), which facilitates cross-membrane transport of histidine and small peptides from inside the endosomes or lysosomes to cytosol, plays an important role in intracellular peptides homeostasis and innate immune responses. However, it remains a ... >> More
The proton-coupled oligopeptide transporter PHT1 (SLC15A4), which facilitates cross-membrane transport of histidine and small peptides from inside the endosomes or lysosomes to cytosol, plays an important role in intracellular peptides homeostasis and innate immune responses. However, it remains a challenge to elucidate functional properties of the PHT1 transporter because of its subcellular localization. The purpose of this study was to resort hPHT1 protein from the subcellular to outer cell membrane of MDCK cells stably transfected with human PHT1 mutants, and to characterize its functional activity in these cells. Using this model, the functional activity of hPHT1 was evaluated by cellular uptake studies with d<sub>3</sub>-l-histidine, GlySar, and the bacterial peptidoglycan products MDP and Tri-DAP. We found that the disruption of two dileucine motifs was indispensable for hPHT1 transporter being preferentially targeting to plasma membranes. hPHT1 showed high affinity for d<sub>3</sub>-l-histidine and low affinity for GlySar, with K<sub>m</sub> values of 16.3 ± 1.9 μM and 1.60 ± 0.30 mM, respectively. Moreover, the bacterial peptidoglycan components MDP and Tri-DAP were shown conclusively to be hPHT1 substrates. The uptake of MDP by hPHT1 was inhibited by di/tripeptides and peptide-like drugs, but not by glycine and acyclovir. The functional activity of hPHT1 was also pH-dependent, with an optimal cellular uptake in buffer pH 6.5. Taken together, we established a novel cell model to evaluate the function of hPHT1 in vitro, and confirmed that MDP and Tri-DAP were substrates of hPHT1. Our findings suggest that PHT1 may serve as a potential target for reducing the immune responses and for drug treatment of inflammatory diseases. << Less
Mol. Pharm. 15:385-393(2018) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Substrate Transport Properties of the Human Peptide/Histidine Transporter PHT2 in Transfected MDCK Cells.
Wang Y., Li P., Song F., Yang X., Weng Y., Ma Z., Wang L., Jiang H.
PHT2, a member of the proton-coupled oligopeptide transporter family, participates in the transportation of small peptides and histidine from lysosomes to the cytosol. It facilitates maintenance of intracellular peptide homeostasis. However, it remains a challenge to elucidate the functional prope ... >> More
PHT2, a member of the proton-coupled oligopeptide transporter family, participates in the transportation of small peptides and histidine from lysosomes to the cytosol. It facilitates maintenance of intracellular peptide homeostasis. However, it remains a challenge to elucidate the functional properties of PHT2 due to its localization in the lysosomal membrane. The aim of this study was to explore the transport function and substrate properties of human PHT2 (hPHT2) by transfecting Madin-Darby canine kidney cells with hPHT2 mutants to obtain stably expressed protein in the cell membrane. Using this cell model, we found that the transport activity of hPHT2 reached a maximum capacity when the extracellular pH was 5.5. hPHT2 showed relatively low affinity for Gly-Sar and relatively high affinity for d<sub>3</sub>-L-histidine, with K<sub>m</sub> values of 428 ± 88 μM and 66.9 ± 5.7 μM, respectively. Several typical substrates or inhibitors of PEPT1 and PEPT2, including valacyclovir, Gly-Gly-Gly, and cefadroxil but not 5-aminolevulinic acid or captopril, were proven to be substrates of hPHT2. However, hPHT2 showed low affinity for valacyclovir with a K<sub>m</sub> value of 5350 ± 1234 μM. In conclusion, this study established a suitable and efficient cell model to explore the function of hPHT2 in vitro and provided important information on the transport activity and substrate properties of hPHT2. << Less
J. Pharm. Sci. 108:3416-3424(2019) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.