Reaction participants Show >> << Hide
-
Namehelp_outline
N6-methyl-L-lysyl-[histone]
Identifier
RHEA-COMP:9846
Reactive part
help_outline
- Name help_outline N6-methyl-L-lysine residue Identifier CHEBI:61929 Charge 1 Formula C7H15N2O SMILEShelp_outline C([C@@H](N*)CCCC[NH2+]C)(=O)* 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 381 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
N6-acetyl-N6-methyl-L-lysyl-[histone]
Identifier
RHEA-COMP:18984
Reactive part
help_outline
- Name help_outline N6-acetyl-N6-methyl-L-lysine residue Identifier CHEBI:197459 Charge 0 Formula C9H16N2O2 SMILEShelp_outline CN(CCCC[C@H](N-*)C(-*)=O)C(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,567 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:77775 | RHEA:77776 | RHEA:77777 | RHEA:77778 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Acetyl-methyllysine marks chromatin at active transcription start sites.
Lu-Culligan W.J., Connor L.J., Xie Y., Ekundayo B.E., Rose B.T., Machyna M., Pintado-Urbanc A.P., Zimmer J.T., Vock I.W., Bhanu N.V., King M.C., Garcia B.A., Bleichert F., Simon M.D.
Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information<sup>1</sup>. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression<sup>2-4</sup>. Pathways involving these post-t ... >> More
Lysine residues in histones and other proteins can be modified by post-translational modifications that encode regulatory information<sup>1</sup>. Lysine acetylation and methylation are especially important for regulating chromatin and gene expression<sup>2-4</sup>. Pathways involving these post-translational modifications are targets for clinically approved therapeutics to treat human diseases. Lysine methylation and acetylation are generally assumed to be mutually exclusive at the same residue. Here we report cellular lysine residues that are both methylated and acetylated on the same side chain to form N<sup>ε</sup>-acetyl-N<sup>ε</sup>-methyllysine (Kacme). We show that Kacme is found on histone H4 (H4Kacme) across a range of species and across mammalian tissues. Kacme is associated with marks of active chromatin, increased transcriptional initiation and is regulated in response to biological signals. H4Kacme can be installed by enzymatic acetylation of monomethyllysine peptides and is resistant to deacetylation by some HDACs in vitro. Kacme can be bound by chromatin proteins that recognize modified lysine residues, as we demonstrate with the crystal structure of acetyllysine-binding protein BRD2 bound to a histone H4Kacme peptide. These results establish Kacme as a cellular post-translational modification with the potential to encode information distinct from methylation and acetylation alone and demonstrate that Kacme has all the hallmarks of a post-translational modification with fundamental importance to chromatin biology. << Less