Enzymes
| UniProtKB help_outline | 8 proteins |
Reaction participants Show >> << Hide
- Name help_outline Sr2+ Identifier CHEBI:35104 (CAS: 22537-39-9) help_outline Charge 2 Formula Sr InChIKeyhelp_outline PWYYWQHXAPXYMF-UHFFFAOYSA-N SMILEShelp_outline [Sr++] 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:78679 | RHEA:78680 | RHEA:78681 | RHEA:78682 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes.
Jatzke C., Watanabe J., Wollmuth L.P.
The channels associated with glutamate receptor (GluR) subtypes, namely N-methyl-D-aspartate receptors (NMDARs), and Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) and kainate receptors (KARs), are to varying degrees permeable to Ca(2+). To compare the mec ... >> More
The channels associated with glutamate receptor (GluR) subtypes, namely N-methyl-D-aspartate receptors (NMDARs), and Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) and kainate receptors (KARs), are to varying degrees permeable to Ca(2+). To compare the mechanism of Ca(2+) influx, we measured Ca(2+) permeability relative to that of Na(+) (P(Ca)/P(Na)) using fractional Ca(2+) currents (P(f)) and reversal potential measurements over a wide voltage and Ca(2+) concentration range in recombinant NMDAR NR1-NR2A, AMPAR GluR-A(Q) and KAR GluR-6(Q) channels. For NR1-NR2A channels, P(Ca)/P(Na) derived from P(f) measurements was voltage independent but showed a weak concentration dependence. A stronger concentration dependence was found when P(Ca)/P(Na) was derived from changes in reversal potentials on going from a Na(+) reference solution to a solution with Ca(2+) as the only permeant ion ('biionic' condition). In contrast, P(Ca)/P(Na) was concentration independent when derived from changes in reversal potentials on going from a Na(+) reference solution to the same solution with added Ca(2+) ('high monovalent' condition). For GluR-A(Q) channels, P(Ca)/P(Na) derived from all three approaches was concentration independent, and for the reversal potential-based approaches were of comparable magnitude. Their most distinctive property was that P(Ca)/P(Na) derived from P(f) measurements was strongly voltage dependent. For GluR-6(Q) channels, P(Ca)/P(Na) derived from P(f) measurements was weakly voltage dependent. On the other hand, P(Ca)/P(Na) derived from all three approaches was the most strongly concentration dependent of any GluR subtype and, except for low Ca(2+) concentrations, the values were of comparable magnitude. Thus, the three Ca(2+)-permeable GluR subtypes showed unique patterns of Ca(2+) permeability, indicating that distinct biophysical and molecular events underlie Ca(2+) influx in each subtype. << Less