Enzymes
| UniProtKB help_outline | 1 proteins |
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 6-O-methyldeacetylisoipecoside Identifier CHEBI:229555 Charge 1 Formula C26H36NO11 InChIKeyhelp_outline BAMBZZTUDRDYEE-QIAPLWSDSA-O SMILEShelp_outline [C@@]1([NH2+]CCC2=C1C=C(O)C(=C2)OC)(C[C@]3([C@]([C@@H](OC=C3C(OC)=O)O[C@@H]4O[C@@H]([C@@H](O)[C@@H]([C@H]4O)O)CO)(C=C)[H])[H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 6-O-methyldeacetylisoipecoside aglycone Identifier CHEBI:229556 Charge 1 Formula C20H26NO6 InChIKeyhelp_outline KOBLTMOWUOJKTH-ZWBYBESUSA-O SMILEShelp_outline [C@@]1([NH2+]CCC2=C1C=C(O)C(=C2)OC)(C[C@]3([C@]([C@@H](OC=C3C(OC)=O)O)(C=C)[H])[H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glucose Identifier CHEBI:4167 (CAS: 2280-44-6) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-GASJEMHNSA-N SMILEShelp_outline OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 163 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:78891 | RHEA:78892 | RHEA:78893 | RHEA:78894 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| Gene Ontology help_outline | ||||
| MetaCyc help_outline |
Publications
-
The new beta-D-glucosidase in terpenoid-isoquinoline alkaloid biosynthesis in Psychotria ipecacuanha.
Nomura T., Quesada A.L., Kutchan T.M.
Ipecac alkaloids produced in the medicinal plant Psychotria ipecacuanha such as emetine and cephaeline possess a monoterpenoid-tetrahydroisoquinoline skeleton, which is formed by condensation of dopamine and secologanin. Deglucosylation of one of the condensed products N-deacetylisoipecoside (1 al ... >> More
Ipecac alkaloids produced in the medicinal plant Psychotria ipecacuanha such as emetine and cephaeline possess a monoterpenoid-tetrahydroisoquinoline skeleton, which is formed by condensation of dopamine and secologanin. Deglucosylation of one of the condensed products N-deacetylisoipecoside (1 alpha(S)-epimer) is considered to be a part of the reactions for emetine biosynthesis, whereas its 1 beta(R)-epimer N-deacetylipecoside is converted to ipecoside in P. ipecacuanha. Here, we isolated a cDNA clone Ipeglu1 encoding Ipecac alkaloid beta-D-glucosidase from P. ipecacuanha. The deduced protein showed 54 and 48% identities to raucaffricine beta-glucosidase and strictosidine beta-glucosidase, respectively. Recombinant IpeGlu1 enzyme preferentially hydrolyzed glucosidic Ipecac alkaloids except for their lactams, but showed poor or no activity toward other substrates, including terpenoid-indole alkaloid glucosides. Liquid chromatography-tandem mass spectrometry analysis of deglucosylated products of N-deacetylisoipecoside revealed spontaneous transitions of the highly reactive aglycons, one of which was supposed to be the intermediate for emetine biosynthesis. IpeGlu1 activity was extremely poor toward 7-O-methyl and 6,7-O,O-dimethyl derivatives. However, 6-O-methyl derivatives were hydrolyzed as efficiently as non-methylated substrates, suggesting the possibility of 6-O-methylation prior to deglucosylation by IpeGlu1. In contrast to the strictosidine beta-glucosidase that stereospecifically hydrolyzes 3 alpha(S)-epimer in terpenoid-indole alkaloid biosynthesis, IpeGlu1 lacked stereospecificity for its substrates where 1 beta(R)-epimers were preferred to 1 alpha(S)-epimers, although ipecoside (1 beta(R)) is a major alkaloidal glucoside in P. ipecacuanha, suggesting the compartmentalization of IpeGlu1 from ipecoside. These facts have significant implications for distinct physiological roles of 1 alpha(S)- and 1 beta(R)-epimers and for the involvement of IpeGlu1 in the metabolic fate of both of them. << Less
J. Biol. Chem. 283:34650-34659(2008) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.