Enzymes
| UniProtKB help_outline | 9 proteins |
Reaction participants Show >> << Hide
- Name help_outline 5α-pregnane-3,20-dione Identifier CHEBI:28952 (CAS: 566-65-4) help_outline Charge 0 Formula C21H32O2 InChIKeyhelp_outline XMRPGKVKISIQBV-BJMCWZGWSA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CC[C@H](C(C)=O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CCC(=O)C2 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,365 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 10,232 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3α-hydroxy-5α-pregnan-20-one Identifier CHEBI:50169 (Beilstein: 3211363; CAS: 516-54-1) help_outline Charge 0 Formula C21H34O2 InChIKeyhelp_outline AURFZBICLPNKBZ-SYBPFIFISA-N SMILEShelp_outline [H][C@@]12CC[C@@]3([H])[C@]4([H])CC[C@]([H])(C(C)=O)[C@@]4(C)CC[C@]3([H])[C@@]1(C)CC[C@@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,372 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:84155 | RHEA:84156 | RHEA:84157 | RHEA:84158 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| KEGG help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation.
Fluck C.E., Meyer-Boni M., Pandey A.V., Kempna P., Miller W.L., Schoenle E.J., Biason-Lauber A.
Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent d ... >> More
Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation. << Less
-
Substrate specificity of human 3(20)alpha-hydroxysteroid dehydrogenase for neurosteroids and its inhibition by benzodiazepines.
Usami N., Yamamoto T., Shintani S., Ishikura S., Higaki Y., Katagiri Y., Hara A.
In this report, we compared kinetic constants and products in the reduction of the neurosteroids, 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha THP) and 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-THDOC), and their precursors, 5alpha-dihydroprogesterone (5alpha-DHP), 5alpha-di ... >> More
In this report, we compared kinetic constants and products in the reduction of the neurosteroids, 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha THP) and 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-THDOC), and their precursors, 5alpha-dihydroprogesterone (5alpha-DHP), 5alpha-dihydrodeoxycorticosterone (5alpha-DHDOC) and progesterone, by three isoenzymes (AKR1C1, AKR1C2 and AKR1C3) of human 3alpha-hydroxysteroid dehydrogenase. AKR1C1 efficiently reduced 3alpha,5alpha-THP, 5alpha-DHP and progesterone to their 20alpha-hydroxy metabolites, and slowly converted 5alpha-DHDOC to 3alpha,5alpha-THDOC. AKR1C2 exhibited low 20-ketoreductase activity for 3alpha,5alpha-THP and moderate 3-ketoreductase activity for 5alpha-DHP and 5alpha-DHDOC. 3alpha,5alpha-THDOC was not reduced by the two isoenzymes. No significant activity for the steroids was detected with AKR1C3. The results suggest that AKR1C2 is involved in the neurosteroid synthesis, but AKR1C1 decreases the neurosteroid concentrations in human brain by inactivating 3alpha,5alpha-THP and eliminating the precursors from the synthetic pathways. In addition, we found that the several benzodiazepines inhibited the three isoenzymes noncompetitively with respect to the substrate. Although cloxazolam was a potent and specific inhibitor of AKR1C3, diazepam, estazolam, flunitrazepam, medazepam and nitrazepam, that inhibited AKR1C1 and AKR1C2, may influence the neurosteroid metabolism. << Less
Biol. Pharm. Bull. 25:441-445(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Selective and potent inhibitors of human 20alpha-hydroxysteroid dehydrogenase (AKR1C1) that metabolizes neurosteroids derived from progesterone.
Higaki Y., Usami N., Shintani S., Ishikura S., El-Kabbani O., Hara A.
Neuroactive steroids, such as 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha-THP) and 3alpha,5alpha-tetrahydrodeoxycorticosterone have been shown to be synthesized from progesterone in animal brains. Comparison of kinetic constants for the neuroactive steroids and their precursors among four ... >> More
Neuroactive steroids, such as 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha-THP) and 3alpha,5alpha-tetrahydrodeoxycorticosterone have been shown to be synthesized from progesterone in animal brains. Comparison of kinetic constants for the neuroactive steroids and their precursors among four human 3(20)alpha-hydroxysteroid dehydrogenases (AKR1C1-AKR1C4) suggests that AKR1C1 and AKR1C2 are involved in the catabolism and synthesis, respectively, of the neuroactive steroids in the human brain. In our efforts to identify agents that would specifically inhibit the two enzymes, benzbromarone and 3',3",5',5"-tetrabromophenolphthalein were found to be relatively selective and potent inhibitors of AKR1C1. Kinetic analyses in the oxidoreduction catalyzed by AKR1C1 in the presence of the inhibitors suggest that the inhibitors bind to the enzyme-NADP(H) complex (K(i)=0.7 nM) in the ordered bi-bi pathway, including an isomerization step. The inhibitors effectively also decreased the reduction of 3alpha,5alpha-THP to its 20alpha-hydroxy metabolite in HepG2 cells treated with ethacrynic acid. << Less
Chem. Biol. Interact. 143:503-513(2003) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.