Reaction participants Show >> << Hide
- Name help_outline (2E,4Z,7Z,10Z,13Z)-hexadecapentaenoyl-CoA Identifier CHEBI:233790 Charge -4 Formula C37H52N7O17P3S InChIKeyhelp_outline HVDWUYYZEXILFX-VOGPJLKTSA-J SMILEShelp_outline O=C(SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(=O)([O-])OP(=O)([O-])OCC1OC(N2C=NC=3C(=NC=NC32)N)C(O)C1OP(=O)([O-])[O-])C=CC=CCC=CCC=CCC=CCC 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,365 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 10,232 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (3E,7Z,10Z,13Z)-hexadecatetraenoyl-CoA Identifier CHEBI:233791 Charge -4 Formula C37H54N7O17P3S InChIKeyhelp_outline RDUFPHXVOIEKMV-YBQPJAEWSA-J SMILEShelp_outline O=C(SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(=O)([O-])OP(=O)([O-])OCC1OC(N2C=NC=3C(=NC=NC32)N)C(O)C1OP(=O)([O-])[O-])CC=CCCC=CCC=CCC=CCC 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,372 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:84755 | RHEA:84756 | RHEA:84757 | RHEA:84758 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
beta-oxidation - strategies for the metabolism of a wide variety of acyl-CoA esters.
Hiltunen J.K., Qin Y.
Living organisms are exposed to a number of different fatty acids and their various derivatives arising either via endogenous synthesis or from exogenous sources. These hydrophobic compounds can play specific metabolic, structural or endocrinic functions in the organisms before their elimination, ... >> More
Living organisms are exposed to a number of different fatty acids and their various derivatives arising either via endogenous synthesis or from exogenous sources. These hydrophobic compounds can play specific metabolic, structural or endocrinic functions in the organisms before their elimination, which can be metabolism to CO(2) or to more polar lipid metabolites allowing their excretion. Quantitatively, one of the major pathways metabolizing fatty acids is beta-oxidation, which consists of a set of four reactions operating at the carbons 2 or 3 of acyl-CoA esters and shortening of the acyl-chain. To allow the beta-oxidation of acyl groups with various steric variants to proceed, different strategies have been developed. These strategies include evolution of beta-oxidation enzymes as paralogues showing specificity with respect to either chain-length or modified acyl-chain, metabolic compartmentalization in eukaryotic cells, controlling of substrate transport across membranes, development of auxiliary enzyme systems, acquisition of enzymes with adaptive active sites and recruiting and optimizing enzymes from non-homologous sources allowing them to catalyze a parallel set of reactions with different substrate specificities. << Less
Biochim Biophys Acta 1484:117-128(2000) [PubMed] [EuropePMC]
This publication is cited by 14 other entries.
-
The Biochemistry and Physiology of Mitochondrial Fatty Acid beta-Oxidation and Its Genetic Disorders.
Houten S.M., Violante S., Ventura F.V., Wanders R.J.
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when g ... >> More
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders. << Less
Annu Rev Physiol 78:23-44(2016) [PubMed] [EuropePMC]
This publication is cited by 70 other entries.
Comments
Inferred from experimental evidence in parent RHEA:61892.