Reaction participants Show >> << Hide
- Name help_outline a β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-[β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-N-acetyl-β-D-GlcNAc derivative Identifier CHEBI:138372 Charge 0 Formula C36H60N3O26R SMILEShelp_outline O([C@@H]1O[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@H]([C@H](O[C@@H]4O[C@@H]([C@H](O)[C@@H]([C@H]4O)O)CO)[C@H](O3)CO)O)NC(C)=O)[C@H]([C@@H](CO[C@]5([C@@H]([C@H]([C@H](O)[C@H](O5)CO)O)NC(C)=O)[H])O2)O)O)[C@@H]([C@H]1NC(=O)C)O)CO)* 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-galactose Identifier CHEBI:66914 Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-ABVWGUQPSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 151 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-N-acetyl-β-D-GlcNAc derivative Identifier CHEBI:234088 Charge 0 Formula C42H70N3O31R SMILEShelp_outline *OC1OC(CO)C(OC2OC(COC3([H])OC(CO)C(OC4OC(CO)C(O)C(O)C4O)C(O)C3NC(=O)C)C(O)C(OC5OC(CO)C(OC6OC(CO)C(O)C(O)C6O)C(O)C5NC(=O)C)C2O)C(O)C1NC(=O)C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 711 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 10,232 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:84999 | RHEA:85000 | RHEA:85001 | RHEA:85002 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Chemo-Enzymatic Synthesis of Isomeric I-branched Polylactosamines Using Traceless Blocking Groups.
Vos G.M., Wu Y., van der Woude R., de Vries R.P., Boons G.J.
Poly-N-acetyl lactosamines (polyLacNAc) are common structural motifs of N- and O-linked glycan, glycosphingolipids and human milk oligosaccharides. They can be branched by the addition of β1,6-linked N-acetyl-glucosamine (GlcNAc) moieties to internal galactoside (Gal) residues by the I-branching e ... >> More
Poly-N-acetyl lactosamines (polyLacNAc) are common structural motifs of N- and O-linked glycan, glycosphingolipids and human milk oligosaccharides. They can be branched by the addition of β1,6-linked N-acetyl-glucosamine (GlcNAc) moieties to internal galactoside (Gal) residues by the I-branching enzyme beta-1,6-N-acetylglucosaminyltransferase 2 (GCNT2). I-branching has been implicated in many biological processes and is also associated with various diseases such as cancer progression. Currently, there is a lack of methods that can install, in a regioselective manner, I-branches and allows the preparation of isomeric poly-LacNAc derivatives. Here, we described a chemo-enzymatic strategy that addresses this deficiency and is based on the enzymatic assembly of an oligo-LacNAc chain that at specific positions is modified by a GlcNTFA moiety. Replacement of the trifluoroacetyl (TFA) moiety by tert-butyloxycarbonyl (Boc) gives compounds in which the galactoside at the proximal site is blocked from modification by GCNT2. After elaboration of the antennae, the Boc group can be removed, and the resulting amine acetylated to give natural I-branched structures. It is also shown that fucosides can function as a traceless blocking group that can provide complementary I-branched structures from a single precursor. The methodology made it possible to synthesize a library of polyLacNAc chains having various topologies. << Less
Chemistry 30:e202302877-e202302877(2024) [PubMed] [EuropePMC]