Enzymes
| Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline androst-4-ene-3,17-dione Identifier CHEBI:16422 (CAS: 63-05-8) help_outline Charge 0 Formula C19H26O2 InChIKeyhelp_outline AEMFNILZOJDQLW-QAGGRKNESA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)[C@@]1([H])CC[C@]1(C)C(=O)CC[C@@]21[H] 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11964
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 876 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,903 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 11α-hydroxyandrost-4-ene-3,17-dione Identifier CHEBI:235536 Charge 0 Formula C19H26O3 InChIKeyhelp_outline WSCUHXPGYUMQEX-GBHAUCNQSA-N SMILEShelp_outline [H]C12CCC3=CC(=O)CCC3(C)C2([H])C(O)CC4(C(=O)CCC14[H])C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11965
Reactive part
help_outline
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 885 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,648 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 10,232 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:86095 | RHEA:86096 | RHEA:86097 | RHEA:86098 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Unlocking Testosterone Production by Biotransformation: Engineering a Fungal Model of pii>Aspergillus nidulanspi/i> Strain Deficient in Steroid 11alpha-Hydroxylase Activity and Expressing 17beta-Hydroxysteroid Dehydrogenase Enzyme as Proof of Concept.
Ortega-de Los Rios L., Getino L., Galan B., Garcia J.L., Luengo J.M., Chamizo-Ampudia A., Fernandez-Canon J.M.
Testosterone holds significant medical and economic importance, with the global market for testosterone replacement therapies valued at approximately USD 1.9 billion in 2023. This hormone is essential for the development and maintenance of male sexual characteristics as well as bone and muscle hea ... >> More
Testosterone holds significant medical and economic importance, with the global market for testosterone replacement therapies valued at approximately USD 1.9 billion in 2023. This hormone is essential for the development and maintenance of male sexual characteristics as well as bone and muscle health. It plays a key role in conditions such as hypogonadism, muscle disorders, and andropause. However, the industrial production of testosterone often involves complex chemical processes that result in low yields, high costs, and environmental damage. Microbial biotransformation of steroids presents an eco-friendly alternative to traditional chemical synthesis. A knockout strain of <i>Aspergillus nidulans</i> deficient in steroid 11α-hydroxylase activity was developed, rendering it incapable of hydroxylating androstenedione, progesterone, and testosterone. In these strains, two newly identified CYP450 enzymes, CYP68L1 from <i>A. nidulans</i> and CYP68L8 from <i>Aspergillus ochraceus,</i> were expressed to confirm their roles as steroid 11α-hydroxylases of androstenedione, progesterone, and testosterone. The availability of these 11α-hydroxylases represents significant progress toward achieving efficient single-step steroid fermentation. Furthermore, the <i>A. nidulans</i> knockout strain serves as an effective model for studying the conversion of androstenedione to testosterone upon the expression of the enzyme 17β-hydroxysteroid dehydrogenase, due to its inability to hydroxylate testosterone. << Less
Biomolecules 14:1502-1502(2024) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.